Supplemental Information:

Supplemental figure legends

Figure S1. Yeast kinetochores form clusters during the cell cycle. MTW1-GFP TUB1mCherry cells were arrested in G₁ phase and then transferred to an agarose pad on a microscope slide for live-cell imaging at 25°C. The localization of kinetochore (Mtw1-GFP) and the spindle morphology (Tub1-mCherry) in a representative cell are shown.

Figure S2. The kinetochore protein foci are functional kinetochores. G_1 -arrested *CEN4-GFP NUF2-mCherry* cells were released into 25°C YPD medium containing 20 µg/ml nocodazole. Cells were harvested after 120 min and the images were acquired by confocal microscopy. The images show the co-localization of *CEN4*-GFP with either the larger or the smaller Nuf2-mCherry focus.

Figure S3. Yeast cohesion mutants do not show a dramatic kinetochore clustering defect. A. G₁-arrested WT or *GAL-SCC1 (MCD1)* cells with *MTW1-GFP TUB1-mCherry* were released from galactose medium into glucose medium containing 20μ g/ml of nocodazole to repress Scc1 expression and disrupt the spindle structure. The cells were harvested after 120 min incubation at 25°C and the number of Mtw1-GFP foci was counted. The average of three independent experiments is shown. **B.** G₁-arrested WT, *ctf*8 Δ , *ctf18\Delta*, and *dcc1\Delta* mutants with *MTW1-GFP* were released into YPD media containing 20 µg/ml nocodazole. Cells were harvested after 120 min incubation at 25°C and the number of Mtw1-GFP foci in each cell was counted using fluorescence microscopy. For each sample, at least 100 cells were counted and the percentage of cells with different number of Mtw1-GFP foci is shown on the top. Some representative images from confocal microscopy are shown at the bottom panel to indicate the distribution of Mtw1-GFP. Figure S4. *slk19* Δ mutants do not show kinetochore clustering defect during an undisturbed cell cycle. G₁-arrested *slk19* Δ mutant cells were transferred onto an agarose pad on a microscope slide to perform live-cell imaging at 25°C. The spindle structure (Tub1-mCherry) and the kinetochore (Mtw1-GFP) signal in a representative *slk19* Δ cell are shown.

Figure S5. Kinetochore mutants $ydr532\Delta$ and $ctf3\Delta$ did not show obvious kinetochore clustering defect. WT, $ydr532\Delta$, and $ctf3\Delta$ cells with *MTW1-GFP* were first arrested in G₁ phase and then released into YPD medium containing 20 µg/ml nocodazole. After incubation at 25°C for 120 min, the cells were fixed for fluorescence microscopy. The percentage of cells with different number of GFP foci is shown on the top panel after counting for more than 100 cells for each sample. The bottom panel shows the localization of Mtw1-GFP in some representative cells.

Figure S6. The kinetochore clustering defect in *slk19* Δ mutant cells is not a consequence of compromised mitotic exit pathway. G₁-arrested WT, *slk19* Δ , and *spo12* Δ mutant cells with *MTW1-GFP* were released into YPD media containing 20 µg/ml nocodazole. Cells were harvested after 120 min incubation at 25°C and the number of Mtw1-GFP foci per cell was counted using fluorescence microscopy. For each sample, more than 100 cells were counted. The percentage of cells with different GFP foci is shown on the top. Confocal microscopy was used to project representative maximum intensity images (bottom).

Figure S7. The expression of Slk19 proteins from bacteria. Left: Coomassie blue staining of SDS-PAGE gel of cleared lysates from bacteria expressing pET-20b(+) (vector only), pET-Slk19-His, pET-Slk19-HA-His, or pET-Slk19-Myc-His. Right: Coomassie blue staining of SDS-PAGE gel of purified pET-Slk19-His, pET-Slk19-HA-His, or pET-Slk19-HA-His, or pET-Slk19-Myc-His. The samples

of the purified proteins were also tested by Western blot analysis using anti-HA and anti-Myc antibodies.

Figure S8. slk19 mutants exhibit separated sister centromeres in the absence of spindle structure. A. slk19 Δ mutants show separated sister centromeres. G₁-arrested WT and slk19 Δ cells in TUB1-mCherry background with either CEN4-GFP or GFP-marked URA3 locus (URA3-GFP) were released into YPD containing 20 µg/ml nocodazole for 120 min at 25°C. Confocal microscopy was used to project maximum intensity images (right panel). More than 100 cells were counted for the percentage of cells with separated GFP dots and the average of three independent experiments is shown. The scale bar represents $3\mu m$. The arrow indicates a cell with separated CEN4-GFP dots. **B.** $slk19\Delta$ mutant cells fail to keep excised sister CEN4-GFP together. WT and *slk19* Δ strains with two recombination sites (RS) flanking the CEN4-GFP were constructed. The strains with a vector or the $P_{GAL}Recombinase$ ($P_{GAL}Recom$) were grown up in raffinose at 25°C until log phase. Cells arrested in G₁ were released into medium containing galactose and 20 µg/ml nocodazole and incubated at 30°C to induce the expression of the recombinase. After 150 min, cells were harvested, fixed and the separation of CEN4-GFP dots was examined using fluorescence microscopy. More than 100 cells were counted for each experiment and shown is the average for three separate experiments. Confocal microscopy was used to project representative maximum intensity images (right). The arrow indicates a cell with fully separated *CEN4*-GFP dots. The scale bar = $3 \mu m$.

Table S1: Strains used in this study

Stains	Relevant genotypes	Source
Y300	MATa trp1-1 ura3-1 his3-11,15 leu2-3,112 ade2-1 can1-100	Lab stock
Y308	$MATa \ slk19\Delta$::HIS3	Uhlmann Lab
2588-7-4	MATa MTW1-GFP::HIS3 TUB1-mCherry::URA3	This study
2588-2-2	$MATa MTW1$ -GFP::HIS3 TUB1-mCherry::URA3 slk19 Δ ::HIS3	This study
2694-2-4	MATa SPC42-mAnnle::HIS3 MTW1-GFP::HIS3	This study
2694-1-3	MATa SPC42-mAnnle::HIS3 MTW1-GFP::HIS3 cdc13-1	This study
2763-5-4	MATa scc1-73 MTW1-GFP··HIS3 TUB1-mCherry··URA3	This study
2003-1-4	MATa kre28KanMX MTW1-GFPHIS3 bar1	This study
2492-5-2	MATa ctf3A···KanMX_MTW1-GFP···HIS3_TUB1-mCherry···UR43	This study
2669-1-1	MATa promURA3tetRGFPLEU2 CENIVtetOX448URA3 CENVtetOX448HIS3	This study
	TIIR1-mCherry··IIRA3	Tino Staty
2668-2-3	MATa promURA3tetRGFPLEU2 CENIVtetOX448URA3 CENVtetOX448HIS3	This study
2000 2 5	TIIR1-mCherry···IIR43 slk19A···HIS3	This study
900-8-1	$MATa \text{ spo} 12 \Lambda \cdots KanMX$	Lab stock
VVW187	$M4Ta mad1 \wedge HIS3$	Lab stock
2019-8-1	$MATa PDS1-18mpc \cdot I FU2 slk 19A \cdot HIS3$	Lab stock
IBV640	MATa PDS1-18myc.: LEU2	Bachant Lab
VVW1/1	MATa promIIR 43. totR. GED. IFU? CENIV. totOY448. UR 43 TURL_mCharm. UR 43	Lab stock
2152-13-1	MATa promIIR 43. totR. GEP. I FU2 CENIV. totOX448. UR 43 TUR1_mCharm. UR 43	This study
2152-15-1		This study
2257 5 2	MATa promIIR A 3. tot R. GEP. I FU? ura 3. tot OYAA 8. UP A 3 alk 10 A. HIS3	This study
172 1 2	$MATa$ promURA3tetRGEPI EU2 ura3tetOX440OKA5 $Sik15\Delta$ IIISS	I ins study
542 5 2	MATa promUDA3tetROFTLEU2 UrustetOA440URAS	Lab stock
545-5-5 VVW205	$MAIa \ PIOMORAJlelkOFFLEU2 \ IELVlelOA440ORAJ$ $MATa \ DSLIS2 (5.6kb) \ CENIIA \ DSVAN (6.9kb) + CENIIA) \ prom IID \ A2tot \ DCEDIEU2$	This study
1 I W 505	MAIa KS.:HIS5 (5.0KO-CENIV) KS.:KAW (0.0KO + CENIV) promOKAS.:leiK.:OFF.:LEU2 $CENIV: totOV449::LID 42 (n 1217 vector)$	This study
VVW200	CENTVleiOA440ORAJ (p121 / vector)	This stade.
1 1 W 308	MAIa KS.(HIS) (SOKO-CENIV) KS.(KAN (OOKO + CENIV) promOKAS.(IeIK.) GFF(LEU2) $CENIV (oto VAA) (IDA2 (D - D - D - D - D - D - D - D - D - D$	This study
VVW20C	$CENTV.: letOA440.: UKA3 (P_{GAL}K-K-Recombinase:: TKP1)$	This stade.
1 1 W 300	MAIa KS::HIS5 (5.0KD - CENIV) KS::KanMA (0.0KD + CENIV)	This study
VVVV207	$promURAS:: lelK:: GFP:: LEU2 CENIV:: lelOX446:: URAS siki 9\Delta:: Hiss (p121 / vector)$	This of 1
1 1 W 307	MAIa KS::HIS5 (5.0KD-CENIV) KS::KAN (0.8KD + CENIV) promUKAS::leiK.: OF F::LEU2	This study
1001 5 2	CENTV.: leiOA440.: UKA5 (P _{GAL} K-Kecombinase:: IKP1) Sik19Δ::HIS5	T als at a als
1091-5-3	MAIa cac13-1 promURAS: TelR: GFP::LEU2 CENIV: TelOX448: URAS TUBI-	Lab stock
2022 14 1	mCherry::UKA5	This of 1
2032-14-1	MAIa cacis-i promUKASleikGFFLEU2 CENIVleiOA446UKAS IUBI-	This study
2002.0.2	mCherry::UKA5 SIKI9A::HIS5	This of 1
2083-9-3	MAIa cac13-1 promUKAS::telK::GFP::LEU2 CENIV::telOX448::UKAS TUBI-	This study
2215 26 2	mCherry::UKA5 sgoIA::KAN	TT1 : (1
2315-26-2	MAIa cdc13-1 promURA3::tetK::GFP::LEU2 CENIV::tetUX448::URA3 sgo1\Delta::KanMX	This study
2(50.1.2	$SIK19\Delta$: HIS3	This of 1
2650-1-3	MAIa scci-/3 promURA5::telR::GFP::LEU2 CENV::telOX448::HIS5 TUBI-	This study
2201.2.4	mCherry::UKA3	TT1 : (1
2281-2-4	MAIa scc1-/3 promURA5::tetR::GFP::LEU2 CENV::tetUX448::HIS5 TUBI-	This study
2017 1 1	mCherry::URA3 siki9A::HIS3	T 1 1
2847-4-1	MATa scc1-73 promURA3::tetR::GFP::LEU2 CENV::tetOX448::HIS3 TUB1-	This study
1000000000	mCherry::URA3 spo12::KanMX	T 1 1
YYW277-1	MAIa/a SLK19-13myc::Sphis5'/SLK19	I his study
YYW314	MATa/α SLK19-13myc::Sphis5'/SLK19-6HA::URA3	This study
934-1-4	MATa CEN4-GFP::URA3, LEU2 NUF2-mCherry	Lab stock
920-24-1	MATa spo12::KAN MTW1-GFP::HIS3	Lab stock
777-2-2	MATA TUBI-GFP:URA3	Lab stock
2582-4-1	MATA TUBI-GFP:URA3 slk19A::HIS3	This study
891-7-1	$MATa TUBI-GFP:URA3 spo12\Delta::KanMX$	Lab stock
2660-4-3	MATa GAL-MCD1::KanMX MTW1-GFP::HIS3 TUB1-mCherry::URA3	This study

G1 release into nocodazole for 120 min (Mtw1-GFP)

Time (min) after G1 release ($slk19\Delta$)

G1 release into nocodazole for 120 min (Mtw1-GFP)

G1 release into nocodazole for 120 min (Mtw1-GFP)

nocodazole for 150 min (*CEN4*-GFP)