

Figure S1 Validations of germ cell population purity. (A) Percentage of targeted cell types based on Giemsa staining for spermatogonia/early prophase I (LZ), pachytene/diplotene (PD), secondary spermatocyte (SS), and round spermatid (RS) populations from reciprocal F_1 males (white bars, *domesticus*^{LEWES} X chromosome; black bars, *musculus*^{PWK} X chromosome). Data are presented as genotype means + 1 SE. (B) Autosomal genes that are expressed in different germ cell types are enriched in the correct germ cell populations from reciprocal F_1 males. The cell population in which each gene should be most highly expressed is indicated with a red box. All genes were enriched in the expected cell populations with the exception of *Acrv1*, which was equally enriched in the SS and RS populations. Expression was normalized relative to *Ubc* (ΔC_T) and adjusted to produce positive values by setting the lowest expression level to zero. Data are presented as genotype means + 1 SE.

Figure S2 Relative expression of six X-linked genes in the testes of F_1 males. $\Delta\Delta C_T$ is the normalized difference in expression between experimental genotypes (shown on the X axis) and the fertile F_1 . X introgression genotypes are numbered 1-7; black bars denote the *musculus*^{PWK} allele at a given locus, white bars denote the *domesticus*^{LEWES} allele. Error bars are +/- 1 SE. Tests for significant differences between experimental and control genotypes were performed on ΔC_T values with ANOVA followed by Dunnett *post hoc* tests, * *P* < 0.05.

Gene	Chr.	Primer name	Primer sequence	Amplicon size (bp)	Reference
4930557A04Rik	Х	A04Rik F	KGCTGATGAGACTCCAGGAT	163	а
		A04Rik R	TCCACCAACAAGGGAGTCAT		
Efhc2	х	Efhc2 F	CATCCTGGGTTGCTTTTGAT	136	а
		Efhc2 R	TGAATGGTGTCATCTTCAAGG		
Actrt1	х	Actrt1 F	CTCAAAAATGGTCTGCAACAGC	164	b
		Actrt1 R	TCTTGATAGGGGTTCCCTCAAA		
1700013H16Rik	х	H16Rik F	GCAATGGCACAGCTTAATGA	68	а
		H16Rik R	TCCTCATTCCATTGCTCAAA		
Fmr1	х	Fmr1 F	GGAAAAGCCAGACAGCGTAG	165	а
		Fmr1 R	CCTGTGCCATCTTGCCTACT		
4930468A15Rik	х	A15Rik F	CACTGGCAATGGCAACTCTA	162	а
		A15Rik R	GCCTGCGATAACTCCTGGTA		
Dmrtc1a	х	Dmrtc1a F	GAGACGCCTGGTTGAGAGAC	104	а
		Dmrtc1a R	TCTTTCCAGTGCGAACTCCT		
Zcchc13	Х	Zcchc13 F	GTGAACTGCAGCAAGACGAG	100	а
		Zcchc13 R	GGGGTTACTAAGCGGTAGCC		
Rps6ka6	Х	Rps6ka6 F	AAGAACGCAGCAACGGTTAT	94	а
		Rps6ka6 R	AAACTGGCTCTCCCTCTTCC		
Satl1	Х	Satl1 F	AACCATTGGATTTGCCATGT	153	а
		Satl1 R	TCGGTGTTGATGGCTATCTG		
1700008105Rik	Х	105Rik F	AAAGCCAATTCGTGGAGACAAT	192	b
		105Rik R	TGGGAGAGATGCAGAATATCCA		
Tex13a (1700025D03Rik)	х	Tex13a F	TGTCACCAGACCTGAAGCAG	169	а
		Tex13a R	CTTACTGCATTCGGGAGAGC		
Ammecr1	х	Ammecr1 F	GCTTTTCTGCTCGGTGTCTC	143	а
		Ammecr1 R	CAACCTCCGGTAGGTAGGTG		
4933400A11Rik	Х	A11Rik F	AAATGGGTATCAGGCAGCAC	170	а
		A11Rik R	CAGTGGGCCATTAAGCATGT		
Acrv1	9	Acrv1 F	TGAGTACACCACTTCCAAGCA	60	с
		Acrv1 R	AAGCACATGTGTGGCAATTT		
Protamine 1 (Prm1)	16	Prot1 F	ACAAAATTCCACCTGCTCACA	129	d
		Prot1 R	CATCTGCTCCTGCTTTTGCT		а

Table S1 Primers used in this study

Gene	Chr.	Primer name	Primer sequence	Amplicon size (bp)	Reference
Hormad1	3	Hormad1 F	CTGCTGACACCAAGAAAGCA	148	а
		Hormad1 R	CCTGGTGGTTGGTAATCTGG		
Hist1h1t (H1t)	13	Hist1h1t F	GTTGGCTCTCCTTTAGTTTTCACTT	128	а
		Hist1h1t R	GCCTTTTAGATGAAGGTTTCTCCT		
lgf1r	7	lgf1r F	CGGTGACTTCTGCTCAAATG	150	а
		lgf1r R	AATGGCGGATCTTCACGTAG		
Ubc	5	Ubc F	AGCCCAGTGTTACCACCAAG	118	а
		Ubc R	CTAAGACACCTCCCCATCA		
beta-actin (actb1)	5	B-actin F	CTGTATTCCCCTCCATCGTG	167	а
		B-actin R	CTTCTCCATGTCGTCCCAGT		

a, this study; b, Coquet et al. 2009; c, Åkerfelt et al. 2008; d, Okada et al. 2007

- ÅKERFELT, M., E. HENRIKSSON, A. LAIHO, A. VIHERVAARA, K. RAUTOMA *et al.*, 2008 Promoter ChIP-chip analysis in mouse testis reveals Y chromosome occupancy by HSF2. Proc. Natl. Acad. Sci. USA 105: 11224-11229.
- COCQUET, J., P. J. I. ELLIS, Y. YAMAUCHI, S. K. MAHADEVAIAH, N. A. AFFARA *et al.*, 2009 The multicopy gene *Sly* repressed the sex chromosomes in the male mouse germline after meiosis. PLoS Biology 7: e1000244.
- OKADA, Y., G. SCOTT, M. K. RAY, Y. MISHINA, and Y. ZHANG, 2007 Histone demethylase JHDM2a is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature 450: 119-123.