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Supplementary Material 

Aslamazov-Larkin and Maki-Thompson expressions for fluctuation conductivity 

The correction to the conductivity due to fluctuating Cooper pairs is given by Aslamazov-Larkin 

(AL) theory. The Maki-Thompson (MT) correction, coming from the coherent scattering of the 

electrons forming the Cooper pair, is normally suppressed in the presence of strong disorder. The 

contribution of AL and MT fluctuations to the dc conductivity in 2D and 3D are given by
1,2
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where ε=ln(T/Tc), t is the thickness of the sample and ξ0 is the BCS coherence length and δ is the 

Maki-Thompson pair breaking parameter. The two contributions are additive. 

The frequency dependence of the fluctuation conductivities are as follows. 
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Aslamazov-Larkin and Maki-Thompson
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(We follow the same notation as in ref. 5.) 

In Figure 1s, we show below the scaled phase and amplitude for the sample with 15.71 K along 

with the predicted theoretical variation from eq. (5)-(8). 
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Figure 1s. Scaled (a) phase and (b) amplitude of the fluctuation conductivity for NbN thin film with Tc ~ 15.71 

K along with theoretical predictions for AL and AL+MT theory in 2D and 3D. 

 

The fact that our samples follow a 2D scaling behavior is not surprising, because even though 

their zero-temperature coherence length ξ0  ~(4-8) nm is much smaller than the films thickness 
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The possible fluctuation scenario that we propose in the manuscript focuses mainly on 

longitudinal phase fluctuations between domains. Indeed, as we mention in the manuscript, even 
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if transverse (vortical) phase fluctuations of BKT type are at play they are expected to be 

relevant only in a small range of temperatures above Tc, as we demonstrated in a recent analysis 

of the BKT transition in thin (t~few nanometers) films in Ref.[7]. Here we show in more details 

why not only the ordinary GL theory but also the standard BKT one fails in explaining the 

fluctuation regime at strong disorder. We focus thus on the most disordered sample, Tc ~ 3.14 K 

where deviations from AL theory are more evident. First of all, in Fig. 2s(a) we plot the 

superfluid density at various frequencies, to check for any signature of the so-called BKT jump, 

which is expected to occur
7
 in the zero-frequency limit when: 
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Notice that, with respect to Eq. (1) of the manuscript, we replaced a with the film thickness t, 

since if any BKT transition occurs it involves the whole film as an effective 2D system. When 

the superfluid stiffness is probed at finite frequency as in our case the universal jump (9) is 

expected to be smeared out
8,9

. In particular, data taken at different frequencies start to deviate 

from each other at the temperature TV where (bound) vortex-antivortex pairs become thermally 

excited. As we discussed in the case of thin films
9
, this temperature TV is usually smaller than the 

real BKT critical temperature due to a small value of the vortex-core energy. This can be seen in 

Fig. 2s(b) where we report for comparison also the data of Ref. [7] in a 3nm thick NbN sample. 

Here TV can be easily identified by the temperature where experimental data deviate from the 

BCS fit valid at lower temperatures. Notice that the downturn of J at TV observed in this thin film 

(panel b) is much more pronounced than the smooth temperature dependence observed in our 

thick sample (panel a) even at the lowest accessible frequency. In the case of the 3nm sample one 

can also estimate the mean-field BCS critical temperature Tc
0
 by extrapolating the BCS fit. As it 

has been demonstrated in Ref. [7], the BKT fluctuations extend only up to Tc
0
. As one can see in 

Fig. 2s(b), the BKT regimes is then less than 1K wide. Thus, in our much thicker samples this 

range of BKT fluctuations is expected to be even smaller, consistently with the fact that Tc 

approaches rapidly Tc
0
 when the film thickness increases

7
.  
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dependence of Ω comes from the BKT correlation length, which is expected to diverge 

exponentially
7,8,10

 at Tc as 

( )0( ) exp / ,        c
r r

c

T T
T A b t t

T
ξ ξ

−
= =                                     (12) 

where the parameter b is related
10

 to the distance between the BKT temperature Tc and the mean-

field one Tc
0
, and to the value of the vortex-core energy µ: 

b =
4

π 2

µ

J0

tc ,      tc =
Tc

0 − Tc

Tc

                                            (13) 

By inserting Eq. (12) into eq. (11) we find that near Tc, Ω(T) is expected to scale as 

( )0( ) exp 2 /
r

T b tΩ = Ω −
. In Fig. 3s(c) we show a plot of ω0(T) versus tr

-1/2
 from which one can 

extract the value of b to be compared with Eq. (13) above. As one can see, in contrast to what 

found for example in InOx
11

, Ω(T) does not seem to really follow the BKT functional form, 

except eventually for very few points near Tc. By fitting this regime one would obtain b~0.045. 

When compared with the relation (13) above, which has been successfully verified in thin NbN 

films
7
, one can estimate the BKT fluctuation range tc. Indeed, as it has been shown in Ref. [7], in 

NbN µ/J0~1, so that b~0.045 corresponds to a value of tc~0.012, so that the BKT regime would 

be limited up to a temperature Tc
0
~3.18. This result is consistent with the rapid shrinking of the 

BKT fluctuations regime with increasing film thickness reported in Ref. [7].  

Let us also show that BKT physics cannot explain the slowing down of fluctuations observed in 

the pseudogap regime, i.e. the observation of a low value of the scaling frequency ω0 at 

temperatures very far from Tc. If one wants to compare again ω0 with the BKT scaling frequency 

Ω(T) (11), one must notice that the expression (12) for the BKT correlation length is only valid 

very near to Tc. Indeed, assuming that fluctuations retain a BKT character very far from it, the 

correct temperature dependence of the correlation length extracted from the renormalization-

group analysis of the BKT transition is
12

 

( )0( ) exp /  BT k Tξ ξ µ≅                                                               (14) 

To give a lower-bound estimate of the corresponding Ω for example at T=5K we can 

approximate J0 in Eq. (11) with the one measured at the highest frequency accessible 

experimentally, i.e J0(T=5 K)~J(20 Ghz,T=5 K)~10
-3

 K. Nonetheless, by using
6
 ξ0 ~ 7 nm, the 

expected value DV ~10
-4

 m
2
/s and Eq. (14) for the correlation length (with  µ/J0~1

7
) we obtain  

Ω(T) ~
4π 2

J0(T)

kBT
DV exp −J0(T) /kBT( )~ 16  GHz                                  (15) 
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This value, which is a lower bound for the true Ω, is still one order of magnitude larger than the  

scaling frequency ω0 observed experimentally. This demonstrates that the enhanced fluctuation 

regime observed in the pseduogap regime cannot be accounted for by the standard BKT 

approach.  
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