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SUPPLEMENTARY FIGURE AND LEGEND
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FIG. 1. Experimental reflectance normalized to the re-
flectance of a bare gold film for a 7.3% (upper curves) and
a 17.1% (lower curves) concentrations for normal incidence
(blue and black curves), for P polarization (green and red
curves) and S polarization (orange and black dotted curves)
at 25◦ incidence.These results show that the position of the
resonance is not significantly sensitive to any of these param-
eters.

SUPPLEMENTARY DISCUSSION

Physical behavior of the quasi-bidimensional
structure

In this section, the physical behavior of the quasi-two-
dimensional structure (gold nanorods on top of a gold
film) is discussed in detail using Fourier Modal Method
simulations. As has been underscored in prior work8, the
optical properties of the nanorods are very close to those
of nanocubes, so that the more easily simulated nanorod
system can be used to illustrate numerous aspects of the
enhanced absorption by nanocubes, including the cav-
ity behaviour of the gap, and the interferometic control
of the absorption. Figure 2 shows a typical reflectance
spectrum for gold nanorods on top of a gold film.

The fundamental mode in a perfect air- or dielectric-
filled metallic waveguide is a mode that presents no cut-
off - it is supported whatever the thickness of the waveg-
uide and the frequency considered. A metal-dielectric-
metal structure, with a perfect metal (all fields excluded),
also supports this kind of fundamental mode. When the
metal is not perfect, the effective index of the mode is
larger than the index of the dielectric16, so that the field
is evanescent in the direction perpendicular to the in-
terfaces. For this reason, the fundamental mode is very
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FIG. 2. Absorption resonances for the nanorods coupled to
a gold film. Reflectance spectra of a periodic array of 74
nm wide gold rods, 4 nm above a gold film, for incidence
angles ranging from 0◦ (red curve) to 25◦ (light blue curve)
by 5◦ steps, in p-polarization (out-of-plane magnetic field).
The fundamental resonance at 773 nm is insensitive to the
incidence angle. The excitation of another resonance at 600
nm for non-normal incidence is a signature of an interferomet-
ric control of the absorption11arising from asymmetric excita-
tion of the waveguide modes that exist in the metal-dielectric-
metal region under the cube. The top inset shows the out-of
plane magnetic field corresponding to the resonance.

often referred to as a coupled plasmon mode - although
this picture may not be the most appropriate - or as a
gap-plasmon.

The effective index of the mode can be found by solving
the dispersion relation

κ tanh
κ g

2
+
κm
εm

= 0 (1)

where g is the size of the gap, κ = k0
√
n2e − 1 and κm =

k0
√
n2e − εm, εm being the permittivity of the metal and

k0 = 2π
λ0

where λ0 is the wavelength in the vacuum. This
dispersion relation can be solved for complex values of ne
once the wavelength has been chosen: zeros of the left-
hand part of the equation can be found using steepest-
descent methods in the complex plane.In the case where
the gap is 4 nm wide, at 773 nm, the complex effective
index is ne = 4.34378 + 0.11961i, showing that the gap-
plasmon mode can propagate over more than 1 micron
before suffering any significant losses. The corresponding
effective wavelength of the mode is 177.8 nm.

Figure 3 shows the effective index as a function of the
distance between the metallic interfaces.

In order to assess the nature of the resonance sup-
ported by the gaps under the rods, we vary the width
of the rod (which represents the length of the cavity, w)
keeping all the other geometrical parameters constant.
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FIG. 3. Real part of the effective index of the guided mode
inside the gap between two metallic walls as a function of the
width of the gap.

The reflectance at normal incidence of the whole struc-
ture at λ0 = 773 nm is shown in Fig. 4 as a function
of the rod width. Minima in the reflectance are found
to correspond to cavity resonances that possess an odd
number of antinodes.
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FIG. 4. Theoretical reflectance, at normal incidence and for p
polarization, as a function of the rod’s width, w. The distance
between the first and the second peak corresponds precisely
to the effective wavelength of the mode supported by the gap
λe = 177.8 nm. The out-of-plane magnetic field is plotted
for each resonance, showing the cavity modes with an odd
number of antinodes.

Cavity resonances correspond to the build-up of a
standing wave in the gap under the cube. When the
nanocubes are excited by waves incident at normal inci-
dence with respect to the surface, the cavity is excited
uniformly on either side of the rod, so that the resonance
can be seen as the interference between two counter prop-
agating cavity modes: one excited from the left of the rod
and one excited from the right. For an even number of
antinodes, the interference is destructive, leading to a
complete cancellation of the resonance. For an odd num-
ber of antinodes, the interference is constructive, leading
to a doubling of the field amplitude in the cavity and a
multiplication of the absorption by a factor of four. This
is an exact example, in a nanometric device, of interfer-

ometric control of the absorption, as has been recently
demonstrated11.

We emphasize here that the first resonance appears for
w = 0.416λe, smaller than the usual λe2 limit associated,
for example, with classical Fabry-Perot interferometers in
optics or patch antennas in microwave technology. Such
cavity resonances can occur when the condition

arg(r) +
2π w

λe
= mπ (2)

is satisfied, where m is an integer and r is the re-
flection coefficient of the mode at the end of the gap.
The reflection coefficient can easily be computed numeri-
cally. In plasmonic structures, such reflection coefficients
may present phases that are very different from classical
cases19, leading here, with a phase for r of −150◦ (and
a reflection of 89.79%), to a further enhancement of the
confinement.

Since the enhanced absorption is related to cavity res-
onances localized under the rod, the wavelength at which
they are excited depends only on r and ne. Since these
two quantities do not change with the angle of incidence,
the position of the resonance is expected to be insensi-
tive to the incidence angle. Any change in the angle of
incidence will however break the symmetry between the
incident field coming from the right of the rod and the
incident field coming from the left, lowering the impact of
the interferometric control on the absorption. In partic-
ular, resonances presenting an even number of antinodes
are not cancelled any more for non-normal incidence and
another absorption peak that can be attributed to these
resonances is observed in the reflectance (see Fig. 2).

Finally, when the size of the rods (the length of the cav-
ity) is kept constant but the thickness of the gap changes,
the variation of the wavelength λ0 for which a resonance
is excited satisfies

λ0 = ne
2π w

mπ − arg(r)
. (3)

This means that the variation of λ0 reproduces exactly
the variation of the effective index (provided the phase of
the reflection coefficient can be considered as constant,
which is usually the case) explaining the somewhat uni-
versal shape of the curve giving the position of the reso-
nance as a function of the spacer thickness - for cubes as
well as for rods. This holds even when the waveguide is
not symmetric (with silver on one side for instance).

The periodicity of the structure plays no role in the
results that are presented above because the period is
smaller than the wavelength. When this period is of the
order of the wavelength, or when large incidence angle
are considered, the grating constituted by the rods al-
lows for the coupling of surface plasmons that couple to
the resonances under the cube. This leads to a splitting
and a shift of the cavity resonances, as shown Fig. 5.
For all of our simulations employing periodic boundary
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conditions, we have carefully checked that the scattering
characteristics (especially the position of the resonance)
do not depend on the periodicity. As the analysis above
has very clearly shown, the resonance of interest for en-
hanced absorption can be correlated with a pure cavity
resonance.
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FIG. 5. Reflectance for three cases : when the periodicity (400
nm period) plays no role (black curve); when the period (750
nm) is of the order of the wavelength (blue curve); when the
angle of incidence (45◦, for a 500 nm period) is large (green
curve).

Critical density

We derive here an approximate expression, valid for
nanorods, for the critical period at which the electrical
currents are balanced by magnetic ones. This expression
be written as

d ' 4 f g. (4)

where d is the average spacing between nanorods (or
periodicity, if the nanorods are distributed periodically).
We begin by assuming that the metal is perfect, so that
each cube can be treated as a perfect patch antenna. In
that case, given the geometry of the problem, the field
is essentially constant throughout any vertical section of
the gap under the cube. For simplicity, let us assume a
periodic system (even if the result can be generalized to
any disordered structure) and take z0 = 1. In the absence
of nanocubes, the surface density of electrical currents on
the surface of the metal due to the incident wave is given
by

KE = H× n̂ (5)

where n̂ is the unitary vector normal to the surface. F
For waves incident normal to the surface, KE = H0 =
E0 (for convenience, we take the wave impedance to be

unitless, or z0 = 1) where E0 (resp. H0) is the modulus
of the incident electric (resp. magnetic) field. When
the nanorods are introduced, they can be modeled as 2D
patch antennas, with their edges considered as magnetic
walls. We consider here that the nanorods are oriented
such that the magnetic field lies along the width of the
rods. Classical antenna theory suggests that the height
of each magnetic wall is g, where g is the size of the gap
– but that the effective height is 2g because the perfect
metallic film acts as a mirror that doubles the effective
height of the magnetic walls. Since there are two walls
(and thus sources of magnetic currents) on each nanorod,
the total area of magnetic current is 4g per unit length
of rod.

Just as the electric surface currents are given by the
modulus of the magnetic field at the surface of magnetic
walls, the magnetic current density is given by the elec-
tric field. Its modulus can be written Ef = f E0 where f
is the enhancement of the field associated with the reso-
nance of the optical patch antenna. Since f >> 1, it is
possible to reach a high average magnetic current on the
surface, even with a small surface coverage and a small
ratio g/d. The average magnetic current density is then

KM =
f E0 4 g

d
. (6)

The critical density is reached when the condition
KM ' KE can be satisfied. In the present case, this
directly leads to

d ' 4 f g. (7)

Size dispersion of the cubes
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FIG. 6. Distribution of the cubes’ sizes for a sample of 40
cubes.

The size distribution of the cubes can be estimated
from the SEM images. Figure6 shows the statistical dis-
tribution of the different sizes. Since different sizes lead
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to different resonance frequencies, a surface covered with
cubes of different sizes leads to an broadening and a re-
duction in the depth of the reflectance spectrum.

The size dispersion can be taken into account by con-
sidering that the absorption by the surface is a statis-
tical average of the absorption by cubes with different
sizes. Full 3D simulations have been made using a Fourier
Modal Method for several cube sizes, and the absorption
aw for each size w and for a concentration of c0 has been
computed using

aw(λ) = r0(λ)− rw(λ), (8)

where rw is the reflection coefficient of a surface covered
by cubes with a size w and r0 is the reflection coefficient
of the bare gold film. The main assumption we make here
is that the absorption for a given size is directly propor-
tional to the surface coverage ( i.e. that the cubes have a
well defined cross-section). Simulations indicate that this
assumption is perfectly valid, but only for a low enough
concentration: for high concentrations, simulations show
that the absorption saturates and is no longer dependent
on the period. As long as the assumption of a well de-
fined cross-section for each cube can be considered valid,
the reflectance for a concentration c can be written

r(λ) ' r0(λ) +

∫
c

c0
√

2πσ2
e−

(w−w̄)

2σ2 rw(λ) dw. (9)

if a gaussian distribution (with an average of w̄ = 62 nm
and a standard deviation of σ = 10 nm here) has been
assumed for the sizes.
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FIG. 7. Comparison between the experimental data in normal
incidence for a 7.3% concentration of the nanocubes(black
curve), a simulation for a 4.3% surface coverage by a perfectly
uniform population of 62 nm cubes (green curve) and the
model of the reflectance taking into account the size dispersion
for a 7.3% concentration (blue curve).

The large distribution of the nanocubes size erodes the
quality of the absorption from the cube covered surface.
Figure 7 shows that the reflectance for a 7.3% surface

coverage of the nanocubes which were fabricated is accu-
rately predicted by the model when the actual size dis-
tribution is taken into consideration. It would clearly
be desirable to utilize the most uniform population of
nanocubes that can be prepared, as this would improve
the response at a select frequency. The model is accu-
rate for predicting the dip of the reflectance that can be
directly attributed to the resonance of the nanoanten-
nas. However, a part of the light is actually scattered or
absorbed by different phenomena (excitation of surface
waves for instance, interaction between particles), and
this is not perfectly reproduced by the model because
these phenomena have much less impact for the low con-
centrations that were used to estimated the efficiency of
the absorption.
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FIG. 8. Comparison between the experimental data in nor-
mal incidence for a 17.1% surface coverage of the nanocubes
which we fabricated(black curve), a simulation for a 4.3% sur-
face coverage by perfectly uniform 62 nm cubes (green curve)
and the model of the reflectance taking into account the size
dispersion for a 12% surface coverage (blue curve).

In an attempt to reach complete absorption, using the
cubes which were available experimentally, we increased
the surface coverage of our sample to 17%. While near
perfect absorption can theoretically be achieved with
a much lower concentration of uniformly sized cubes,
according to our model a 12% concentration of cubes
with a size distribution approximating our fabricated
cubes would produce a reflectance close the measured
reflectance of the 17% coverage sample, as shown figure
8.

Definition of effective absorption cross-section

An important figure of merit for quantifying the ab-
sorbance of the nanocube surface is that of effective ab-
sorption efficiency. The association of either scattering
or absorption cross-sections to individual nanocubes is
complicated by the ambiguity in the effective incident
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field, which includes the actual incident plane wave plus
reflected fields. Thus, we define the effective absorption
cross-section as the absorbed power divided by the inten-
sity of the incident plane wave, which provides a practical
measure. Note that this absorption cross-section is only

relevant to the configuration considered; the absorption
cross-section for a cube in free space would be quite differ-
ent. We further define the effective absorption efficiency
as the effective absorption cross-section divided by the
physical cross-sectional area of the cube.
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