SUPPLEMENTAL INFORMATION

Intracellular trafficking of the K_v1.3 potassium channel is regulated by the pro-domain of a matrix metalloprotease

Hai M. Nguyen^{1*}, Charles A. Galea^{2*}, Galina Schmunk¹, Brian J. Smith³, Robert A. Edwards⁴, Raymond S. Norton² and K. George Chandy¹

¹Departments of Physiology and Biophysics, and ⁴Pathology, School of Medicine, University of California, Irvine, California ²Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia ³Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia

Running Title: MMP23 regulation of potassium channels

To whom correspondence should be addressed:

1. Professor K. George Chandy, Dept. of Physiology and Biophysics, 291 Irvine Hall, School of Medicine, University of California Irvine, Irvine, CA 92697. Fax: 949 8243143; E-mail: gchandy@uci.edu

2. Professor Ray Norton, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. Fax: +61 3 99039167; Email: <u>ray.norton@monash.edu</u>

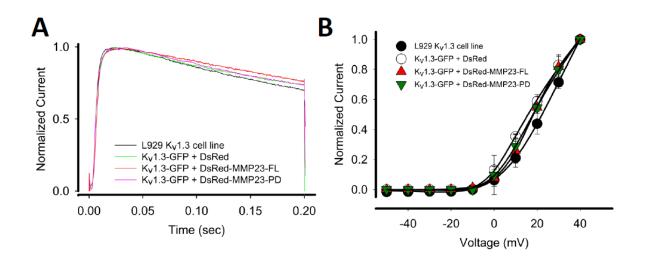
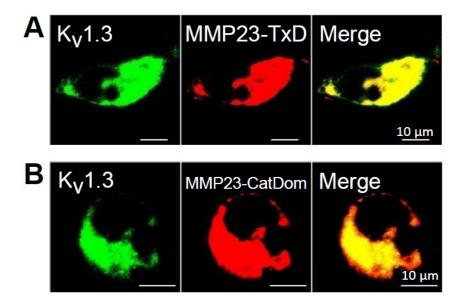

Region	R ₁	R ₂	R_1/R_2
	(s ⁻¹)	(s ⁻¹)	
MMP23-PD	1.16 ± 0.03	10.79 ± 0.03	0.21 ± 0.02
Transmembrane domain, α1 (residues 16-40)	0.95 ± 0.04	17.71 ± 0.05	0.06 ± 0.01
C-terminal helix (α2; residues 45-60)	1.16 ± 0.02	11.59 ± 0.03	0.11 ± 0.01

Table S1. Average R_1 , R_2 and R_1/R_2 values for MMP23-PD.

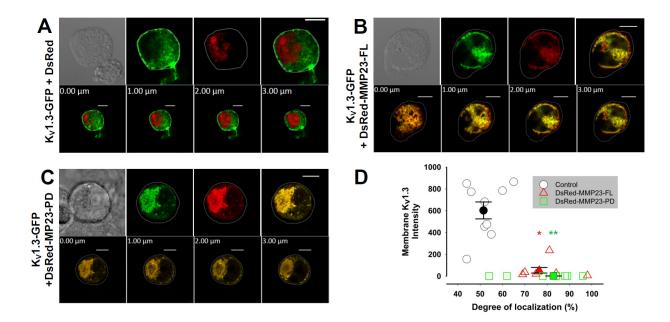
Longitudinal (R₁) and transverse (R₂) ¹⁵N relaxation rates were obtained at 600 MHz and 30°C for a solution containing 0.7 mM ¹⁵N-labelled MMP23-PD in 20 mM sodium citrate (pH 5.0), 100 mM DPC, 20 mM TCEP, 0.02% (w/v) sodium azide, 95% H₂O and 10% ²H₂O.

MMP23B IgCAM (hu) ROBO4 (Dro)	PRTKTRLVPEGRNVTFRCGQKILHKKGKVYWYKDQEPLEFSYPGYLALGEAHLSIIANAVN-EGTYTCVV PRDMVAVVGEQFTLECGPFWGHPEPTVSWWKDEKPLALQPGRHTVSGGSLLMARAEKS-DEGTYMCVAEAW	NP_008914 67613
ROBO4 (hu)	PRDMVAV <mark>VGEQFTLECG</mark> PFWG <mark>H</mark> PEPT <mark>VSWWKD</mark> GK <mark>PL</mark> ALQPGRHTVS <mark>G</mark> GSLLMARAEKS-DEGTYMCVAAAQ	88450
ROBO1 (hu)	<mark>P</mark> SDVMVV <mark>VG</mark> EPAVMECQPPRG <mark>H</mark> PEPTIS <mark>W</mark> KKDGS <mark>PL</mark> DDKDERITIR <mark>G</mark> GKLMITYTRKS-DAGK <mark>Y</mark> VCVGAAI	15023
ROBO3 (Dro)	<mark>P</mark> GNVVVA <mark>VG</mark> EPAVLE <mark>C</mark> VPPRG <mark>H</mark> PEPS <mark>V</mark> SWRKDGARLKEEEGRITIRGGKLMMSHTLKS-DAGM <mark>Y</mark> VCVAQ	96MS0
ROBO2 (hu)	PTDVVVAAGEPAILECOPPRGHPEPTIYWKKDKVRIDDKEERISIRGGKLMISNTRKS-DAGMYTCV-	NP 002933
CDON (rat)	<mark>VDEG</mark> NTAVIACHLPES <mark>HPK</mark> AQ <mark>V</mark> RYSVK <mark>QEWLEAS</mark> RDN <mark>YLI</mark> MPSGNLQ <mark>I</mark> VNASQED <mark>EGTYKCAA</mark>	XP_003751100
Brother of CDO (hu)	<mark>VDEG</mark> NTAVIACHLPES <mark>HPK</mark> AQ <mark>V</mark> RYSVK <mark>QEWLEAS</mark> RGN <mark>YLI</mark> MPSGNLQ <mark>I</mark> VNASQED <mark>EGMY</mark> KCAA	NP_150279
Hemicentin (dog)	<mark>VFEG</mark> QTAHLTC-NATG <mark>H</mark> PQP <mark>KVMWFKD</mark> GR <mark>PL</mark> TGGDAHHISPDG <mark>ALL</mark> QVLQANLSSS <mark>GHY</mark> SCIA	XP 548414
Contactin 4 (ZF)	<mark>lvkeg</mark> gd <mark>v</mark> lie <mark>c</mark> kp <mark>k</mark> -msp <mark>rg</mark> sis <mark>wrk</mark> gnda <mark>l</mark> re <mark>s</mark> sriavlesgslrisnvsks-da <mark>gsytova</mark>	XP_700023

Supplemental Figure S1. Sequence alignment of the IgCAM domain of MMP23's with ROBO proteins. The C-terminal IgCAM domain of MMP23 exhibits high sequence similarity with the ROBO, CDON and brother of CDO proteins. Identical residues are highlighted in yellow, and conserved residues are highlighted in grey.

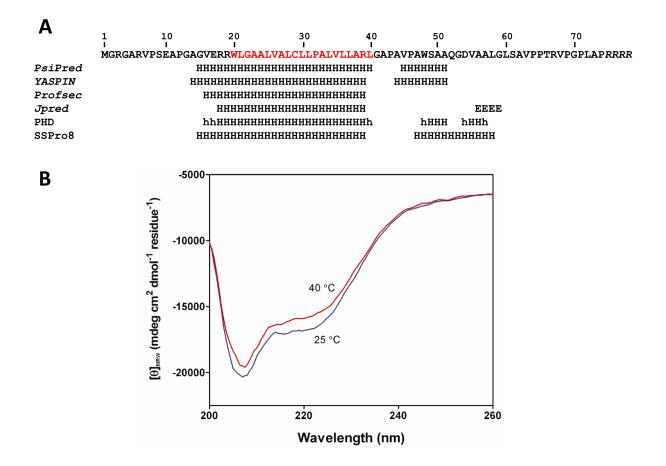


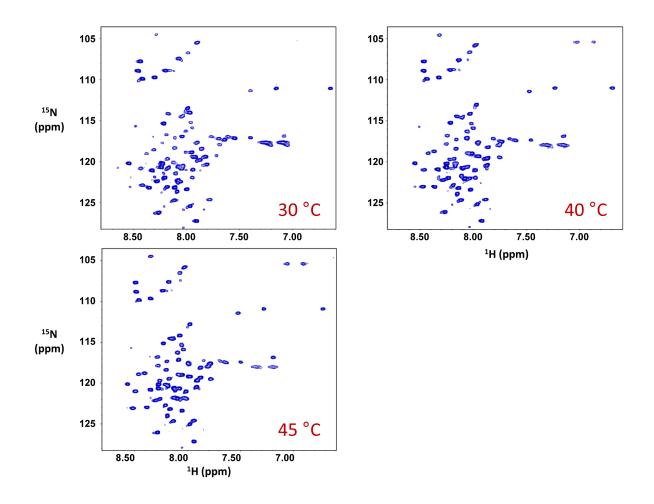
Supplemental Figure S2. Biophysical properties of $K_V 1.3$ in cells expressing MMP23-FL or MMP23-PD versus normal $K_V 1.3$. *A*, averaged current traces elicited by a +40 mV depolarizing pulse for 200 msec during whole-cell patch-clamping recordings. The activation and inactivation of $K_V 1.3$ -GFP were the same in cells co-expressing DsRed-MMP23-FL, DsRed-MMP23-PD or the DsRed vector. GFP-tagged $K_V 1.3$ channels showed no differences compared to those of untagged $K_V 1.3$ stably expressed in the L929 cell line (1). *B*, Current-Voltage relationship of $K_V 1.3$ was the same in cells co-expressing DsRed-MMP23-FL, DsRed-vector.


Rat MMP23-PD1	MGWRACLRPEASGA-VQGRWLGAVLSGLCLLSALAFLEWLGSPTETAWNAAQGNVDAPDV	59
Mouse MMP23-PD 1	MGCRACLRPEASGA-VQGRWLGAALSGLCLLSALALLEWLGAPTETAWRAAQGNVDAPNV	59
Human MMP23-PD 1	MGRGARVPSEAPGAGVERRWLGAALVALCLLPALVLLARLGAPAVPAWSAAQGDVAALGL	60

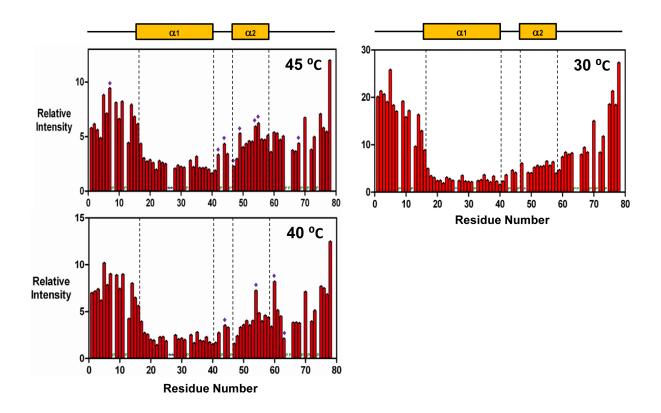
Rat MMP23-PD60	GG <mark>ST</mark> P-QVPS <mark>LL</mark> S <mark>M</mark> LVTRRRRYTLTPARL	87
Mouse MMP23-PD 60	GS <mark>ST</mark> A-QVPRLLTMSVTRRRRYTLTPARL	87
Human MMP23-PD61	SAVPPTR <mark>VP</mark> GP <mark>L</mark> APRRRR <mark>YTLTPARL</mark>	86

Supplemental Figure S3. Comparison of sequences of rat, mouse and human MMP23-PD. Rat MMP23 is not processed (cleaved) in mammalian cells despite containing the RRRRY furin cleavage site (6).


Supplemental Figure S4. Co-localization of MMP23-TxD and MMP23-CatDom with $K_V 1.3$. *A*, confocal images demonstrating that $K_V 1.3$ -GFP co-localizes with DsRed-MMP23-TxD. The MMP23-TxD construct contains the pro-domain, the catalytic domain and the TxD. *B*, confocal images demonstrating that $K_V 1.3$ -GFP co-localizes with DsRed-MMP23-CatDom. The MMP23-CatDom construct contains the pro-domain and the catalytic domain. The deletion constructs are described in the main text and in Fig. 1, B.


Supplemental Figure S5. Quantification of K_V1.3 on the cell surface in cells expressing the DsRed vector versus DsRed-MMP23-FL or DsRed-MMP23-PD. *A*, Confocal images of K_V1.3-GFP plus DsRed-MMP23-FL. *C*, K_V1.3-GFP plus DsRed-MMP23-PD. In each top row, the left panel shows a bright-field image, the second panel shows the K_V1.3-GFP image, the third panel shows the DsRed image (vector, MMP23-FL, MMP23-PD) and the right panel shows the merged images. *Scale bars* indicate 10 µm in length. Each bottom row shows z-stack images of the respective cell taken at four consecutive planes. *D*, membrane K_V1.3 plotted against co-localization index between K_V1.3-GFP was calculated from averaged intensity at four different regions of interest (ROI's) at the membrane surface (outlined by dotted-line based on the bright-field image) in each cell. Quantification of co-localization was determined using LSM Zeiss Zen 2011 software (*n* = 10 cells were imaged for quantification of membrane K_V1.3-GFP and co-localization). Statistical significance is determined by *Student's t-test* and indicated by *p*-values (*, *p* <5*x*10⁻⁴, **, *p* < 1*x*10⁻⁴)

	1	10	20	30	40	50	60	70
	MGRGARVP	SEAPGAGV	ERRWLGAAL	VALCLLPALV	LLARLGAPAV	PAWSAAQGD	VAALGLSAVPE	TRVPGPLAPRRR
TMPred	*****							
MEMSAT	xxxxxxxxxxxxxxxxx							
PHDhtm	*****							
DAS			XXXXX	xxxxxxxxx	XXXXXXXX		XXXXXXX	
SPLIT			XXXXXXX	XXXXXXXXXX	XXXXXXXXXX	x	XXXXXXXXX	
OCTOPUS			XXXXXXX	XXXXXXXXXX	XXXX			
TMMOD	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX							
Pred-TMR2			XXXXXX	*****	XXX			


Supplemental Figure S6. MMP23-PD trans-membrane domain (TMD). Predicted TMD for MMP23-PD based on various TMD predictors. "X" denotes residues predicted to lie within a TMD. Predictions of trans-membrane regions were obtained using the following programs: TMPred (2), MEMSTAT (3), PHDhtm (4), DAS (5), Pred-TMR2 (6), SPLIT (7), TMMOD (8), and OCTOPUS (9).

Supplemental Figure S7. Secondary structure of MMP23-PD. *A*, predicted secondary structure for MMP23-PD using various web-based secondary structure predictors. The predicted TMD is highlighted in red. "H" denotes predicted α -helical regions and "E" β -strand regions. Secondary structure was predicted using the web-based secondary structure prediction programs Jpred (10), PHD (11), YASPIN (12), Profsec (11), PsiPred (13) and SSPro8 (14). *B*, CD spectral analysis of MMP23-PD in DPC micelles at 25 and 40°C.

Supplemental Figure S8. HSQC spectra of MMP23-PD at various temperatures. The sample contained 0.7 mM MMP23-PD in 20 mM sodium citrate buffer (pH 5.0), 100 mM DPC, 20 mM TCEP, 0.02% NaN₃ and 10% 2 H₂O. Spectra were acquired on a Varian Inova 600 MHz spectrometer at the indicated temperatures.

Supplemental Figure S9. Relative cross-peak intensities in $[{}^{1}\text{H}-{}^{15}\text{N}]$ HSQC spectra of MMP23-PD at 30, 40 and 45°C. The secondary structure for MMP23-PD is shown at the top. Overlapped peaks are denoted with a purple diamond. Proline residues are denoted with a "P" and residues for which no data were available an asterisk. Note that cross-peak intensities are more uniform at the higher temperatures.

Α	1 10	20	30	40	50
Giant Panda (G1m504)	MGLGACMSSAA	SGARAQAR <mark>RLEAV</mark>	LGAVCLLPVL	LLLPTGWDRKF	'ENAERPKEGD
Dog (E2R4V4)	MGLGACVSSAA	SGAQAQAR <mark>WLGAV</mark>	LGALCLLPVL	LLLARP GAPAA	RLGASAAQGD
Porcine (F1RJC6)	MGRRACVPSAA	SGARDQAR <mark>RLGAV</mark>	LGALCLLPAL	LLLARL GAPAA	RLAASAAQGD
Bovine (Q2TBM7)	MGRGACVPSAA	SGAGDRAR <mark>QLGAV</mark>	LGALCLFPAL	VLLAWP <mark>GTPAN</mark>	IGAGARVAQGD
Human (075900)	MGRGARVPSEA	PGAGVERR <mark>WLGAA</mark>	LVALCLLPAL	<mark>vllarl</mark> gapaü	'P-AWSAAQGD
Opossum (F7CDE4)	MGPGVNPPAEP	PGGTARMP <mark>SYRAL</mark>	LGLLCLLPAL	<mark>allltl</mark> kdtae	P-EARGSQED
Chicken (E1BX58)	MDQIEQLSADRKKN	IFLSEDNKKSN <mark>GYRTV</mark>	VGFLCIFPVV	ALLAIAGDPAG	- AVQESQED
	:	:	: :::*.:	* *	: *
Β	X 130 X 137 X 137	A38 X A27 V20 (31) A A A A A A A A A A A A A A A A A A A	24 V35 L28 X L21 R30 P32		

Supplemental Figure S10. Conservation of residues within the TMD of MMP23-PD. *A*, sequence alignment of MMP23-PD from different species, where the predicted TMD is highlighted by an orange box. The sequence alignment was performed using ClustalW (15). Residues that are identical, conserved or semi-conserved across species are denoted by the symbols "*", ":" or ".", respectively. Residues are numbered according to human MMP23-PD. *B*, helical wheel representation generated using the web-based program WHEEL (http://rzlab.ucr.edu/scripts/wheel/wheel.cgi) for residues within the predicted TMD of (human) MMP23-PD. Identical and conserved residues within the MMP23-PD TMD are denoted by "×" and residues that cluster on separate faces of the helical wheel are denoted by a dotted blue line. Residues are represented as follows: hydrophilic - circles, hydrophobic – diamonds and potentially positively charged as pentagons. Residues are color-coded according to hydrophobicity/hydrophilicity, from red (most hydrophilic) through yellow (moderately hydrophilic) to green (most hydrophobic). Potentially charged residues are colored light blue.

S12

REFERENCES

- Grissmer, S., Nguyen, A. N., Aiyar, J., Hanson, D. C., Mather, R. J., Gutman, G. A., Karmilowicz, M. J., Auperin, D. D., and Chandy, K. G. (1994) Pharmacological characterization of five cloned voltage-gated K⁺ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines *Mol. Pharmacol.* 45, 1227-1234
- 2. Hofmann K and Stoffel W (1993) TMbase A database of membrane spanning proteins segments *Biol Chem Hoppe-Seyler* 374, 166
- 3. Jones, D. T., Taylor, W. R., and Thornton, J. M. (1994) A model recognition approach to the prediction of all-helical membrane protein structure and topology *Biochemistry* **33**, 3038-3049
- 4. Rost, B., Casadio, R., Fariselli, P., and Sander, C. (1995) Transmembrane helices predicted at 95% accuracy *Protein Sci.* **4**, 521-533
- 5. Cserzo, M., Wallin, E., Simon, I., von, H. G., and Elofsson, A. (1997) Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method *Protein Eng* **10**, 673-676
- 6. Pasquier, C. and Hamodrakas, S. J. (1999) An hierarchical artificial neural network system for the classification of transmembrane proteins *Protein Eng* **12**, 631-634
- 7. Juretic, D., Zoranic, L., and Zucic, D. (2002) Basic charge clusters and predictions of membrane protein topology J. Chem Inf. Comput. Sci. 42, 620-632
- 8. Kahsay, R. Y., Gao, G., and Liao, L. (2005) An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes *Bioinformatics*. **21**, 1853-1858
- 9. Viklund, H. and Elofsson, A. (2008) OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar *Bioinformatics*. **24**, 1662-1668
- 10. Cole, C., Barber, J., and Barton GJ (2008) The Jpred 3 secondary structure prediction server *Nucleic Acids Res* **36**, 197-201
- 11. Rost, B., Yachdav, G., and Liu, J. (2004) The PredictProtein server Nucleic Acids Res. 32, W321-W326
- 12. Lin, K., Simossis, V. A., Taylor, W. R., and Heringa, J. (2005) A simple and fast secondary structure prediction method using hidden neural networks *Bioinformatics*. **21**, 152-159
- 13. McGuffin, L. J., Bryson, K., and Jones, D. T. (2000) The PSIPRED protein structure prediction server *Bioinformatics*. **16**, 404-405
- 14. Pollastri, G., Przybylski, D., Rost, B., and Baldi, P. (2002) Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles *Proteins* **47**, 228-235
- 15. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice *Nucleic Acids Res* **22**, 4673-4680