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1 Data set
This section contains four tables for the 62 technologies used in the paper, divided into four indus-
try groups: Chemical, Hardware, Energy, and Other. In each row, after the name of a particular
product, a contiguous time period is specified for which data was available, followed by the num-
ber of data points in the resulting yearly time series. Then the parameter estimates g, m, and w
are given, followed by the corresponding cumulative production volume doubling times, unit price
halving times, and progress ratios, respectively.

To facilitate our research and the exchange of information, we built a data repository called
the Performance Curve Database at http://pcdb.santafe.edu/. References for all the
data sources and the data for the 62 technologies analyzed in this paper are available in the online
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Chemical time data g m w doubling halving progress
Industry period points time time ratio

AcrylicFiber [1] 1960 - 1972 13 0.076 0.045 0.58 4.0 6.8 0.67
Acrylonitrile [1] 1959 - 1972 14 0.077 0.033 0.43 3.9 9.1 0.74
Aluminum [1] 1956 - 1972 17 0.035 0.004 0.13 8.7 67 0.91
Ammonia [1] 1960 - 1972 13 0.047 0.039 0.83 6.4 7.7 0.56
Aniline [1] 1961 - 1972 12 0.027 0.025 0.93 11 12 0.52
Benzene [2] 1953 - 1968 16 0.036 0.027 0.74 8.4 11 0.60
BisphenolA [1] 1959 - 1972 14 0.065 0.027 0.41 4.6 11 0.76
Caprolactam [1] 1962 - 1972 11 0.092 0.050 0.55 3.3 6.0 0.69
CarbonDisulfide [1] 1963 - 1972 10 0.019 0.009 0.47 16 32 0.72
Cyclohexane [1] 1956 - 1972 17 0.060 0.023 0.37 5.0 13 0.77
Ethanolamine [1] 1955 - 1972 18 0.049 0.027 0.53 6.1 11 0.69
EthylAlcohol [1] 1958 - 1972 15 0.031 0.006 0.17 9.8 51 0.89
Ethylene [2] 1954 - 1968 15 0.083 0.016 0.18 3.6 19 0.88
Ethylene2 [1] 1960 - 1972 13 0.058 0.028 0.49 5.2 11 0.71
EthyleneGlycol [1] 1960 - 1972 13 0.041 0.029 0.69 7.3 10 0.62
Formaldehyde [1] 1962 - 1972 11 0.041 0.026 0.63 7.4 12 0.65
HydrofluoricAcid [1] 1962 - 1972 11 0.035 0.001 0.018 8.5 460 0.99
LowDensityPolyethylene [2] 1953 - 1968 16 0.11 0.044 0.38 2.7 6.8 0.77
Magnesium [1] 1954 - 1972 19 0.022 0.003 0.15 13 90 0.90
MaleicAnhydride [1] 1959 - 1972 14 0.055 0.024 0.43 5.4 13 0.74
Methanol [1] 1957 - 1972 16 0.038 0.025 0.68 8.0 12 0.63
NeopreneRubber [1] 1960 - 1972 13 0.033 0.009 0.28 9.1 32 0.82
Paraxylene [2] 1958 - 1968 11 0.10 0.043 0.42 3.0 7.0 0.75
Pentaerythritol [1] 1952 - 1972 21 0.039 0.018 0.45 7.7 17 0.73
Phenol [1] 1959 - 1972 14 0.042 0.035 0.83 7.1 8.5 0.56
PhthalicAnhydride [1] 1955 - 1972 18 0.035 0.031 0.88 8.6 9.7 0.54
PolyesterFiber [1] 1960 - 1972 13 0.12 0.059 0.48 2.4 5.1 0.72
PolyethyleneHD [1] 1958 - 1972 15 0.093 0.042 0.46 3.2 7.1 0.73
PolyethyleneLD [1] 1958 - 1972 15 0.077 0.038 0.50 3.9 7.8 0.71
Polystyrene [2] 1944 - 1968 25 0.086 0.025 0.24 3.5 12 0.84
Polyvinylchloride [2] 1947 - 1968 22 0.073 0.033 0.43 4.1 9.2 0.74
PrimaryAluminum [2] 1930 - 1968 39 0.044 0.011 0.25 6.8 28 0.84
PrimaryMagnesium [2] 1930 - 1968 39 0.075 0.011 0.17 4.0 26 0.89
Sodium [1] 1957 - 1972 16 0.014 0.007 0.47 21 45 0.72
SodiumChlorate [1] 1958 - 1972 15 0.043 0.017 0.40 7.0 17 0.76
Styrene [1] 1958 - 1972 15 0.051 0.030 0.59 5.9 10 0.67
TitaniumSponge [2] 1951 - 1968 18 0.12 0.051 0.38 2.6 5.9 0.77
Urea [1] 1961 - 1972 12 0.065 0.032 0.49 4.6 9.5 0.71
VinylAcetate [1] 1960 - 1972 13 0.055 0.033 0.60 5.5 9.1 0.66
VinylChloride [1] 1962 - 1972 11 0.061 0.039 0.64 5.0 7.7 0.64
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Hardware time data g m w doubling halving progress
Industry period points time time ratio

DRAM [3] 1972 - 2007 36 0.26 0.19 0.72 1.2 1.6 0.61
HardDiskDrive [4] 1989 - 2007 19 0.28 0.28 1.0 1.1 1.1 0.49
LaserDiode [5] 1983 - 1994 12 0.32 0.14 0.39 0.95 2.2 0.76
Transistor [6] 1969 - 2005 37 0.26 0.21 0.82 1.2 1.4 0.57

Energy time data g m w doubling halving progress
Industry period points time time ratio

CCGTElectricity [7] 1987 - 1996 10 0.075 0.009 0.12 4.0 34 0.92
CrudeOil [2] 1947 - 1968 22 0.025 0.004 0.17 12 68 0.89
ElectricPower [2] 1940 - 1968 29 0.046 0.016 0.34 6.5 19 0.79
Ethanol [8] 1981 - 2004 24 0.06 0.023 0.36 5.0 13 0.78
GeothermalElectricity [9] [10] 1980 - 2005 26 0.042 0.022 0.50 7.2 14 0.71
MotorGasoline [2] 1947 - 1968 22 0.028 0.006 0.21 11 48 0.86
OffshoreGasPipeline [11] 1985 - 1995 11 0.11 0.049 0.49 2.7 6.1 0.71
OnshoreGasPipeline [11] 1980 - 1992 13 0.068 0.007 0.11 4.4 45 0.93
Photovoltaics [12] 1976 - 2003 28 0.097 0.028 0.30 3.1 11 0.81
Photovoltaics2 [13] 1977 - 2009 33 0.092 0.045 0.48 3.3 6.7 0.71
WindElectricity [9] [10] 1984 - 2005 22 0.19 0.040 0.18 1.6 7.5 0.88
WindTurbine [14] 1982 - 2000 19 0.12 0.018 0.13 2.5 17 0.91
WindTurbine2 [14] 1988 - 2000 13 0.23 0.017 0.073 1.3 18 0.95

Other time data g m w doubling halving progress
Industry period points time time ratio

Beer [2] 1952 - 1968 17 0.077 0.015 0.20 3.9 20 0.87
ElectricRange [2] 1947 - 1967 21 0.029 0.010 0.29 10 31 0.82
FreeStandingGasRange [2] 1947 - 1967 21 0.014 0.009 0.56 21 35 0.68
MonochromeTelevision [2] 1948 - 1968 21 0.074 0.024 0.28 4.1 12 0.82
RefinedCaneSugar [2] 1936 - 1968 33 0.006 0.002 0.32 47 150 0.80

Table 1: Statistics for the datasets used in this study. g is the exponent for the increase in produc-
tion, m the exponent for the drop in cost, w the exponent for Wright’s law, the doubling time refers
to the increase in production, the halving time to the decrease in cost, and the progress ratio is 2−w,
interpreted as the drop in cost with a doubling of production. All times are in years.
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database. Both visualization and free download from the website is available to users. For our
analysis we selected the performance curves that had both price and production data for at least 10
years, with no missing values in between. The resulting 62 datasets are products that retained a
functional unit equivalence during their (at least decade-long) evolution.

For example, the Transistor dataset represents many different technologies that have been in
production during the 37 years in its time period. Transistors have changed dramatically during
that period in terms of factors such as speed and power requirements. Nonetheless, one could very
crudely say that a transistor as a functional unit is equivalent to any other; hence, we make the
crude approximation of comparing the price of such a unit from the sixties to one from the 2000s.
Similarly, a bit can be viewed as a functional unit for the DRAM and HardDiskDrive data.

All unit prices are yearly averages after adjusting for inflation. The Transistor, DRAM, Hard-
DiskDrive, and Photovoltaics2 data was converted to real 2005 U.S. dollars using the GDP deflator.
The other data sets were published previously, and were converted to real values by their respective
authors.

Since originally for each dataset either only yearly production or only total cumulative pro-
duction was available, we obtained the missing variable from the other one by adding up yearly
production or differencing cumulative production, respectively. In order to avoid missing values,
this resulted in a shortening of the original time period by one year because for the first year either
the previous experience measure was absent (assumed to be zero) or the yearly production was
unknown.

2 Exponential increase of production
In this section we present additional evidence for the exponential increase in production, which is
one of our new findings in this paper. One way to evaluate the assumption of the constant growth
rates g and m and the constant learning rate determined by w is to assess goodness of fit by looking
at the distribution of R2 percentages for the regression lines used for estimating g, m, and w. High
R2 values in Supplementary Figure 1 indicate that in most cases the exponential approximation is
accurate for g and m, and the power law fit is good for w.

3 Hindcasting results
We illustrate the hindcasting method using the Transistor dataset. This time series started in the
year 1969 and ended in 2005. Thus the first hindcast was made in 1973 based on only five data
points, targeting the rest of the time period from 1974 to 2005. The last hindcast was based on the
data from 1969 to 2004 having a single target: the year 2005. The resulting projection lines over
the actual data points are drawn in Supplementary Figure 2 for the six different functional forms.
The most striking feature of Moore’s projections is that they consistently underestimated prices for
the latter half of the Transistor dataset. On the other hand, Nordhaus’s projections strayed from the
data in both directions. In contrast, we can see that the other four functional forms demonstrated
a more satisfactory prediction performance on this particular dataset, having projection lines near
the actual data points and thus avoiding huge deviations (that are measured on the log scale).

Another way to visualize the prediction errors of the hindcasting procedure is to plot them as
a surface over two time coordinates: the origin and the target of the hindcasts. Since the target
year is always after the origin, the result is a mountain of prediction errors over a triangular area.
Figures 3 to 8 use topographical colors to indicate the magnitude of these errors on the log scale
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Figure 1: Histograms of R2 values for fitting g, m, and w for the 62 datasets in percent. The
majority of the cases have R2 values in excess of 90%.
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Figure 2: Predictions of six functional forms for the transistor dataset. The hindcasting origin
varies from 1973 to 2004 (the target year varies from 1974 to 2005). Forecasts are plotted in gray;
the data is shown in blue diamonds. The 1974 forecast is based on five years of data, 1969 - 1973.
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Figure 3: Moore’s prediction errors for the Transistor dataset as a function of the hindcasting origin
from 1973 to 2004 and the target year from 1974 to 2005.
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Goddard's error mountain
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Figure 4: Goddard’s prediction errors for the Transistor dataset as a function of the hindcasting
origin from 1973 to 2004 and the target year from 1974 to 2005.
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Figure 5: laggedWright’s prediction errors for the Transistor dataset as a function of the hindcast-
ing origin from 1973 to 2004 and the target year from 1974 to 2005.
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Wright's error mountain
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Figure 6: Wright’s prediction errors for the Transistor dataset as a function of the hindcasting
origin from 1973 to 2004 and the target year from 1974 to 2005.
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SKC's error mountain
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Figure 7: SKC’s prediction errors for the Transistor dataset as a function of the hindcasting origin
from 1973 to 2004 and the target year from 1974 to 2005.
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Nordhaus's error mountain
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Figure 8: Nordhaus’s prediction errors for the Transistor dataset as a function of the hindcasting
origin from 1973 to 2004 and the target year from 1974 to 2005.

12



Moore
Transistor

1974 1978 1982 1986 1990 1994 1998 2002

20
04

19
99

19
94

19
89

19
84

19
79

19
74

Moore's errors (orders of magnitude)

Target (year)

O
rig

in
 (

ye
ar

)

Goddard
Transistor

1974 1978 1982 1986 1990 1994 1998 2002

20
04

19
99

19
94

19
89

19
84

19
79

19
74

Goddard's errors (orders of magnitude)

Target (year)

O
rig

in
 (

ye
ar

)

laggedWright
Transistor

1974 1978 1982 1986 1990 1994 1998 2002

20
04

19
99

19
94

19
89

19
84

19
79

19
74

laggedWright's errors (orders of magnitude)

Target (year)

O
rig

in
 (

ye
ar

)

Wright
Transistor

1974 1978 1982 1986 1990 1994 1998 2002

20
04

19
99

19
94

19
89

19
84

19
79

19
74

Wright's errors (orders of magnitude)

Target (year)

O
rig

in
 (

ye
ar

)

SKC
Transistor

1974 1978 1982 1986 1990 1994 1998 2002

20
04

19
99

19
94

19
89

19
84

19
79

19
74

SKC's errors (orders of magnitude)

Target (year)

O
rig

in
 (

ye
ar

)

Nordhaus
Transistor

1974 1978 1982 1986 1990 1994 1998 2002

20
04

19
99

19
94

19
89

19
84

19
79

19
74

Nordhaus's errors (orders of magnitude)

Target (year)

O
rig

in
 (

ye
ar

)

Figure 9: Summary of the prediction errors of six functional forms for the Transistor dataset as a
function of the hindcasting origin from 1973 to 2004 and the target year from 1974 to 2005.
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Figure 10: Summary of the prediction errors of six functional forms for the Photovoltaics2 dataset
as a function of the hindcasting origin from 1981 to 2008 and the target year from 1982 to 2009.
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(base 10). Note that the coloring scheme only extends from the sea level in blue (meaning no or
negligible error between -6% and +6%), up to the snow line at 1.0 (above which the rest of the
mountain is left uncolored). This is where the absolute error on the log scale reaches 1.0, mean-
ing that the predicted price is either 10 times greater than the actual (+900% hindcasting error)
or 10 times less (−90% error). To illustrate how the errors on the log scale translate to percent-
ages, the color key on the right of these three-dimensional plots indicate the negative error range
on the original scale from 0% to −90%. (However, we should keep in mind that because the log-
arithm of the absolute difference is taken, a 1.0 on the log scale can mean either +900% or−90%).

The functional form inspired by Moore does not predict transistors very well. This is ironic
since transistors are the technology that Moore’s Law was originally formulated to describe. In
fact, among all the 62 performance curves, Moore’s functional form was the least accurate for the
Transistor dataset. We can see that a large portion of the error mountain in Figure 3 rises not only
above the 1.0 mark at the snow line, but also exceeds the 2.0 mark, i.e. hindcasting that the price
would be less than one-hundredth of what it actually turned out to be. The summit is at 2.67,
meaning that in this case the actual price is underestimated by a factor of 467.

For a side-by-side comparison of all the hindcasts on the Transistor dataset, Supplementary
Figure 9 is a bird’s-eye view from the top of how the six competing forms fared against one an-
other. Supplementary Figure 10 is a similar plot for the Photovoltaics2 dataset. Supplementary
Figures 11 to 16 are top view supergraphics for the error mountains generated by the six functional
forms for the other 60 datasets.

4 Error model
Visualizing the error mountains is a quick and intuitive way to screen out inadequate functional
forms like Nordhaus that show erratic behavior. This was especially easy to do with multiple-
variable forms (with or without interaction terms) that were prone to overfitting, which is mani-
fested by the fact they gave good in-sample fits but generated large and inconsistent errors when
trying to predict out-of-sample. Hence, Nordhaus and all the other multiple-variable forms that
failed to generate a relatively consistent prediction error surface (without huge jumps) were not in-
cluded in the subsequent formal analysis. The statistical comparison we made here in constructing
our error model is only between the “finalists".

After ruling out all multiple-variable forms but SKC’s by visual inspections of the error moun-
tains, we are left with five candidates competing for the hindcasting champion title: Moore, God-
dard, laggedWright, Wright, and SKC. For example, does Moore’s comparably weaker perfor-
mance on the Transistor dataset make it an inferior functional form? How do the others compare?
Is any one of them significantly better than any of the others?

There are no obvious ways to answer these questions, but one way is to build a suitable sta-
tistical model for the errors generated by the remaining five functional forms, based on the data
displayed for those functional forms in Supplementary Figures 9 to 16. The statistical model em-
ployed here is an extended linear mixed-effects model, fitted by maximum likelihood, using the
lme function in the nlme package in R. The mixed-effects designation here refers to the presence
of both fixed and random effects (as explained later in this section). The basic linear mixed-effects
model needed extension because the hindcasting data was both heteroscedastic (with unequal vari-
ances) and correlated (not independent).
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Figure 11: Summary of the prediction errors generated by six functional forms as a function of the
hindcasting origin (vertical axis) and the target year (horizontal axis).
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Figure 12: Summary of the prediction errors generated by six functional forms as a function of the
hindcasting origin (vertical axis) and the target year (horizontal axis).
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Figure 13: Summary of the prediction errors generated by six functional forms as a function of the
hindcasting origin (vertical axis) and the target year (horizontal axis).
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Figure 14: Summary of the prediction errors generated by six functional forms as a function of the
hindcasting origin (vertical axis) and the target year (horizontal axis).

19



Moore
Photovoltaics

Goddard
Photovoltaics

laggedWright
Photovoltaics

Wright
Photovoltaics

SKC
Photovoltaics

Nordhaus
Photovoltaics

Moore
PhthalicAnhydride

Goddard
PhthalicAnhydride

laggedWright
PhthalicAnhydride

Wright
PhthalicAnhydride

SKC
PhthalicAnhydride

Nordhaus
PhthalicAnhydride

Moore
PolyesterFiber

Goddard
PolyesterFiber

laggedWright
PolyesterFiber

Wright
PolyesterFiber

SKC
PolyesterFiber

Nordhaus
PolyesterFiber

Moore
PolyethyleneHD

Goddard
PolyethyleneHD

laggedWright
PolyethyleneHD

Wright
PolyethyleneHD

SKC
PolyethyleneHD

Nordhaus
PolyethyleneHD

Moore
PolyethyleneLD

Goddard
PolyethyleneLD

laggedWright
PolyethyleneLD

Wright
PolyethyleneLD

SKC
PolyethyleneLD

Nordhaus
PolyethyleneLD

Moore
Polystyrene

Goddard
Polystyrene

laggedWright
Polystyrene

Wright
Polystyrene

SKC
Polystyrene

Nordhaus
Polystyrene

Moore
Polyvinylchloride

Goddard
Polyvinylchloride

laggedWright
Polyvinylchloride

Wright
Polyvinylchloride

SKC
Polyvinylchloride

Nordhaus
Polyvinylchloride

Moore
PrimaryAluminum

Goddard
PrimaryAluminum

laggedWright
PrimaryAluminum

Wright
PrimaryAluminum

SKC
PrimaryAluminum

Nordhaus
PrimaryAluminum

Moore
PrimaryMagnesium

Goddard
PrimaryMagnesium

laggedWright
PrimaryMagnesium

Wright
PrimaryMagnesium

SKC
PrimaryMagnesium

Nordhaus
PrimaryMagnesium

Moore
RefinedCaneSugar

Goddard
RefinedCaneSugar

laggedWright
RefinedCaneSugar

Wright
RefinedCaneSugar

SKC
RefinedCaneSugar

Nordhaus
RefinedCaneSugar

Figure 15: Summary of the prediction errors generated by six functional forms as a function of the
hindcasting origin (vertical axis) and the target year (horizontal axis).
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Figure 16: Summary of the prediction errors generated by six functional forms as a function of the
hindcasting origin (vertical axis) and the target year (horizontal axis).
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4.1 Choosing the response
When trying to build a model that captures the essence of a large dataset, one is faced with many
theoretical and practical challenges, involving several subjective decisions, such as the various
tradeoffs between simplicity and goodness of fit. One of the most important early choices is what
to model in the first place. We started out by trying to model the prediction errors directly (i.e. the
height of the error mountains), but that did not lead to acceptable diagnostics of the resulting fits.

Next we experimented with transforming these prediction errors in order to obtain a response
that will allow a better fit. We searched the family of power transformations, which is known for its
flexibility to accommodate a wide range of variance structures for the purposes of linear modeling.
Exponents in the neighborhood of 0.5 provided the best fits in terms of regression diagnostics, so
we fixed it at 0.5. This meant applying a square root transformation to the original errors.

Formally, the response rfdij used in this model is the root-transformed absolute hindcasting
error on the log scale (base 10) of the hindcast made in year i for year j using the functional form
f for dataset d. In other words, this is the square root of the height of the error mountain of f for
d at the time coordinates i and j:

rfdij =
∣∣∣log y(d)j − log ŷ

(f,d,i)
j

∣∣∣0.5 , (1)

where y(d)j is the actual price in the dataset d in year j and ŷ(f,d,i)j is the price estimated by the
functional form f for year j, using all data in d available up to and including year i, where i < j.

4.2 Modeling the response
The main advantage of choosing the response given by equation (1) is that it can be modeled in a
parsimonious manner as a linear function of the hindcasting horizon = target − origin = j − i.
The effect of each functional form f can be characterized by two numbers: an intercept αf and a
slope parameter βf that specifies this linear relationship. But the individual curves themselves can
have large effects on the response and we need to take that into account, too. So, instead of model-
ing only the average effect of the functional form f by a linear function of the hindcasting horizon
(j−i) with the linear relationship αf+βf (j−i), we model the joint effect of the functional form f
and the performance curve data d with the adjusted linear trend (αf +ad)+(βf + bd)(j− i), where
the ad and bd quantities are additive adjustments to the average intercept and slope parameters αf

and βf , respectively, to take into account the peculiarities of the dataset d.

In order to avoid adding 62 ad parameters plus 62 bd parameters, we treated the
(
ad
bd

)
pair

as a two-dimensional random vector having a bivariate normal distribution with mean
(
0
0

)
and

variance-covariance matrix
(
ψ2
a ψab

ψab ψ2
b

)
. This way we can parameterize these adjustments as ran-

dom deviations from the average
(
αf

βf

)
at a cost of only 3 additional parameters instead of 2 ×

62 = 124, resulting in a parameterization that is not only much more parsimonious but also makes
maximum likelihood estimation possible by keeping the number of parameters in check.

In statistical terminology, we can say that the effects of the 62 performance curves are random
(as opposed to the fixed effects of the five functional forms). The interpretation is that we view
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each curve as a random draw from a hypothetical population of performance curves. Of course, the
underlying assumption here is that it makes sense to talk about such an ensemble of performance
curves that have enough characteristics in common to make this notion meaningful.

4.3 Statistical model
Now we are ready to define the extended linear mixed-effects model by the following equation:

rfdij = (αf + ad) + (βf + bd)(j − i) + εfdij, (2)

where the response is modeled as the sum of a trend term (that is a linear function of the hindcasting
horizon (j − i) as before) plus an εfdij random field term to take into account the deviations from

the trend. This is assumed to be a Gaussian stochastic process independent of the
(
ad
bd

)
random

vector, having mean 0, and given ad and bd, having variance equal to a positive σ2 times the fitted
values:

Var (εfdij| ad, bd) = σ2 E (rfdij| ad, bd) (3)

and an exponential correlation structure within each mountain that is a function of the differences
of the two time coordinates with a positive range parameter ρ and another small positive nugget
parameter η quantifying the extent of these correlations:

Corr(εfdij, εf ′d′i′j′) = δff ′δdd′(1− η) exp {−(|i− i′|+ |j − j′|)/ρ}, (4)

where the two Kronecker δ functions ensure that each mountain surface is treated as a separate
entity.

Equations (3) and (4) were chosen to deal with the fact that variances tend to increase with
altitude on the error mountains and that there are serial correlations along the time coordinates i
(hindcasting origin) and j (hindcasting target). The heteroscedasticity (increasing variance with
increasing elevation) problem is handled by the variance function (3) and the time dependence is
taken care of by the correlation function (4). Based on the likelihood, this exponential correla-
tion function provided the best fit. Note that instead of the usual Euclidean distance (root sum of
squares of differences), here the so-called “Manhattan” measure was used (the sum of the absolute
differences), because it provided a much better fit in terms of the likelihood.

4.4 Intercept and slope parameter estimates
The maximum likelihood estimates for the five intercept and five slope parameters are listed in
Tables 2 and 4, respectively. It is evident that all five functional forms perform similarly in terms
of hindcasting accuracy, because most of these estimates are not significantly different from one
another. The corresponding approximate p-values for all pairwise comparisons are listed in Tables
3 and 5. The highest intercept estimate for Goddard means that it does a relatively poor job of
forecasting at short times, whereas the higher slope estimates for Moore and SKC mean that they
are not as good at long times. Otherwise the models are roughly equivalent.

5 Extrapolation method
For the purposes of this paper we have chosen to fit the model to all the past data available at time
i and use the resulting parameter estimates to make the forecasts. Thus the forecast corresponds to
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Intercept estimate
αSKC 0.164
αMoore 0.168
αWright 0.170
αlaggedWright 0.172
αGoddard 0.195

Table 2: Intercept estimates.

Intercept difference p-value
αMoore − αSKC 0.555
αlaggedWright − αSKC 0.224
αlaggedWright − αMoore 0.531
αWright − αSKC 0.389
αWright − αMoore 0.786
αWright − αlaggedWright 0.722
αGoddard − αSKC 0.000
αGoddard − αMoore 0.001
αGoddard − αlaggedWright 0.005
αGoddard − αWright 0.002

Table 3: Testing whether the pairwise intercept differences are significantly different from zero.

the trend line for the entire data set, and points in the distant past get just as much weight as points
in the present. We have chosen this method because it is the “vanilla" model, and probably the most
widely used to apply these laws. This method is also well-suited to compare standard hypotheses,
which is the main objective of the paper. We do not argue that this is the best possible forecasting
method; developing more accurate forecasting methods will be a topic of future research. In the
meantime we want to provide more background information on some of the anomalies commented
on in the text, and in particular figure 5 and footnote 7.

In figure 5 there is an immediate drop in the one-year forecast relative to the last observed
price. This is a direct consequence of the use of the vanilla method, which is the ideal model if the
data are generated by independent fluctuations around a deterministic trend. To illustrate this with
Moore’s law, suppose the true random process generating the data is of the form:

log yt = at+ n(t). (5)

This is the most straightforward interpretation of Moore’s law. If the noise terms n(t) are uncorre-
lated in time, then the method we have used to make forecasts here is ideal. But if the noise terms
are correlated in time this is no longer the case. Suppose, for example, that the process is better
described by a random walk with drift, of the form

log yt+1 = log yt − µ+ n(t), (6)

where µ is a drift term, and where the noise fluctuations n(t) are uncorrelated in time. In this case
the best forecast for log yt−1 is log yt − µ. There are many intermediate possibilities, for example
if log yt is a long-memory process.

We find clear evidence for memory in the noise terms. Taking into account correlations in the
noise terms produces better forecasts for short time horizons. For longer time horizons, greater
than 3 - 5 years, they are roughly equivalent.
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Slope estimate
βGoddard 0.02396
βWright 0.02397
βlaggedWright 0.02438
βMoore 0.02706
βSKC 0.02848

Table 4: Slope estimates.

Slope difference p-value
βMoore − βSKC 0.394
βlaggedWright − βSKC 0.011
βlaggedWright − βMoore 0.093
βWright − βSKC 0.005
βWright − βMoore 0.050
βWright − βlaggedWright 0.788
βGoddard − βSKC 0.007
βGoddard − βMoore 0.059
βGoddard − βlaggedWright 0.788
βGoddard − βWright 0.991

Table 5: Testing whether the pairwise slope differences are significantly different from zero.

The use of the vanilla model leads to some peculiar results. For example, we find that short
term forecasts get worse as we add more historical data — in other words, recent data is more
useful than data in the far past. This is not surprising if the true dynamics are closer to Eq. 6 than
to Eq. 5 — more data systematically means that the most recent point will show larger deviations
from the trend line. However, continually adjusting trend lines to take into account the most
recent data compromised the goodness of fit of our error model by generating excessive noise
(discontinuities in the error mountains). In other words, improving the short-term forecasts would
have compromised our ability to compare standard hypotheses (functional forms commonly used
to forecast technological improvement).

In Figure 5, we are using one of the longest time series in the data set, and the forecast is based
on the entire series. Thus the errors for a time horizon of one are large compared with the typical
series in the data set. This is not a problem at longer time horizons. The error estimates after the
first five years become more trustworthy.

In future we may work on constructing a “best model". In this paper, our goal is to place the
problem of forecasting technological change using past performance in a solid statistical context,
and to quantify the quality of the forecasts.
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