SUPPLEMENTARY INFORMATION

Stereochemically Probing the Photo-Favorskii Rearrangement: A Mechanistic Investigation

Richard S. Givens*, Marina Rubina, Kenneth F. Stensrud

Department of Chemistry, the University of Kansas, Lawrence, KS 66045

Corresponding Author: Richard S. Givens

Email: givensr@ku.edu

Contents

General Information	1
HPLC Data	2
¹ H spectrum of 14	3
¹³ C spectrum of 14	4
¹ H spectrum of (S,R) -12a	5
¹³ C spectrum of (<i>S</i> , <i>R</i>)-12a	6
¹ H spectrum of (R,R)-12b	7
¹³ C spectrum of (R,R)-12b	8

General Information

NMR spectra were recorded on a 400 MHz instrument, equipped with a quadruple-band gradient probe (H/C/P/F QNP) or a 500 MHz with a dual carbon/proton cryoprobe (CPDUL). ¹³C NMR spectra were registered with broad-band decoupling. Chiral HPLC analyses were performed using Chiralcel OD-H column (250 x 4.6 mm, 10% IPA in hexanes).

HPLC Data

Chiral HPLC chromatogram trace of acid 9 recovered from the photolysis experiment:

SPD-20A Ch1- 254nm Results Retention Time	Area	Area %	Height	Height %
12.783	2294863	49.71	52933	55.03
15.617	2321444	50.29	43250	44.97
Totals				
	4616307	100.00	96183	100.00

¹H spectrum of 14

3

¹³C spectrum of 14

¹H spectrum of (*S*,*R*)-12a

¹³C spectrum of (*S*,*R*)-12a

¹³C spectrum of (R,R)-12b

