Supporting Information

Mechanistic Studies of Wacker-Type Amidocyclization of Alkenes Catalyzed by (IMes)Pd(TFA)₂(H₂O): Kinetic and Stereochemical Implications of Proton Transfer

Xuan Ye, Paul B. White and Shannon S. Stahl*

Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison,
Wisconsin 53706

Table of Contents	Pages
Supplemental rate dependence data obtained from gas-uptake kinetic studies	S2
Derivation of the rate law	S2-S3
Analysis of crossover experiments via mass-spectrometry method	S4
Kinetic time course generated by monitoring catalytic reaction by ¹ H NMR spectroscopy	S5
Titrations of catalyst solution with 4 monitored by ¹ H NMR spectroscopy	S 6

Supplemental rate dependence data obtained from gas-uptake kinetic studies.

Figure S1. Dependence of the initial rate on amount of exogenous base Na_2CO_3 . The curve fit results from a nonlinear least-squares fit to a hyperbolic function of mols of exogenous base Na_2CO_3 . Conditions: [(IMes)Pd(TFA)₂(H₂O)] = 2 mM, [4] = 100 mM, 0 – 0.8 mmol Na_2CO_3 , 4.0 ml of toluene, initial $pO_2 = 700$ torr, 80 °C.

Figure S2. Comparison of [amide] dependences in the presence of fixed amount of Na₂CO₃ and in the presence of 2 equivalent of Na₂CO₃ relative to amide. Conditions: $[(IMes)Pd(TFA)_2(H_2O)] = 2 \text{ mM}$, [amide 4]= 0-200 mM, 4.0ml of toluene, initial $pO_2 = 700 \text{ torr}$, 80 °C.

Derivation of the rate law.

In the presence of added base:

The rate of product **5** formation is described by the following rate law.

$$\frac{d[\mathbf{5}]}{dt} = k_2^{cis}[\mathbf{7}] \tag{S1}$$

Applying equilibrium approximation on 7.

$$K_1^{cis} = \frac{[\mathrm{H_2O}] \bullet [7]}{[\mathrm{IMesPd}(\mathrm{TFA})_2(\mathrm{H_2O})] \bullet [4]}$$
 (S2)

$$[7] = \frac{K_1^{cis} \cdot [\text{IMesPd}(\text{TFA})_2(\text{H}_2\text{O})] \cdot [4]}{[\text{H}_2\text{O}]}$$
(S3)

The total palladium concentration has contributions from IMesPd(TFA)₂(H₂O) and 7.

$$[Pd]_{T} = [IMesPd(TFA)_{2}(H_{2}O)] + [7]$$
(S4)

By substituting eq S3 into eq S4, one obtains

$$[7] = \frac{K_1^{cis} \bullet [4] \bullet [Pd]_T}{K_1^{cis} \bullet [4] + [H_2O]}$$
(S5)

Substitution of eq S5 into eq S1 yields the rate law (eq 4).

$$\frac{d[\mathbf{5}]}{dt} = \frac{k_2^{cis} K_1^{cis} \bullet [\mathbf{4}] \bullet [\mathrm{Pd}]_{\mathrm{T}}}{K_1^{cis} \bullet [\mathbf{4}] + [\mathrm{H}_2\mathrm{O}]} \tag{4}$$

Analysis of crossover experiments via mass-spectroscopy.

Ts Measured relative intensity of peaks:
$$252.2:253.2:254.2=1:0.16:0.06$$

NHTs
$$CD_3 + NHTs$$
 $CD_3 + NHTs$ $CD_3 + NH$

43%

11%

41%

5%

Kinetic time course generated from monitoring catalytic reaction by ¹H NMR spectroscopy.

Figure S3. A kinetic time course for (IMes)Pd(TFA)₂(H₂O)-catalyzed oxidative amidocyclization of **4** monitored by ¹H NMR spectroscopy. Condition: [(IMes)Pd(TFA)₂(H₂O)] = 1.8 mM, [**4**] = 10.8 M, [1,3,5-trimethoxybenzene] = 6.0 mM, in toluene- d_8 , 80 °C. Data sampling occurred at every 5 min.

Note: Small amounts of starting material 4 are oxidized to the *N*-tosylimine, which hydrolyzes in situ into tosylamide (TsNH₂) and 4-pentenal. This background reaction accounts for the slightly faster consumption of 4 relative to the formation of 5, evident in Figure S3. This decomposition pathway does not significantly affect the initial rates measurements determined by gas-uptake methods.

Titrations of Catalyst Solution with Substrate 4 Monitored by ¹H NMR Spectroscopy.

The following five NMR samples were prepared in toluene- d_8 stock solution of 1,3,5-tri-tert-butylbenzene ([IS]=3.2 mM). The following concentrations were calculated based on IS.

#1.
$$[(IMes)Pd(TFA)_2(H_2O)] = 4.8 \text{ mM}$$

#2.
$$[(IMes)Pd(TFA)_2(H_2O)] = 5.2 \text{ mM}; [4] = 34.7 \text{ mM}$$

#3.
$$[(IMes)Pd(TFA)_2(H_2O)] = 5.0 \text{ mM}; [4] = 63.8 \text{ mM}$$

#4.
$$[(IMes)Pd(TFA)_2(H_2O)] = 5.4 \text{ mM}; [4] = 106.9 \text{ mM}$$

#5.
$$[(IMes)Pd(TFA)_2(H_2O)] = 5.4 \text{ mM}; [4] = 184.7 \text{ mM}$$

¹H NMR Spectra of all five samples were taken on a 500 MHz spectrometer at five temperatures: -37 °C, -20 °C, 0 °C, 24 °C, 40 °C. The stacked plot of the five ¹H NMR spectra measured at 40 °C is shown below to show the dependence of the chemical shift of the NHC proton on the concentration of 4 (Figure S4).

 $L = H_2O$ or substrate

Figure S4. Titration of (IMes)Pd(TFA)₂(H₂O) solution with substrate **4**. Condition: $[(IMes)Pd(TFA)_2(H_2O)] = 5 \text{ mM}, [4] = 0 - 0.18 \text{ M}, \text{ in toluene-} d_8, 40 \text{ °C}.$