Electronic Supplementary Information for

Organocatalytic Multicomponent Reaction for the Acquisition of a Potent and Selective Inhibitor of mPTPB, a Virulence Factor of Tuberculosis

Rongjun He, Li-Fan Zeng, Yantao He, Li Wu, Andrea Michelle Gunawan, Zhong-Yin Zhang*

Department of Biochemistry and Molecular Biology and Chemical Genomics Core Facility Indiana University School of Medicine 635 Barnhill Drive, Indianapolis, IN, USA, 46202

E-mail:zyzhang@iupui.edu

Index

1.	Table S1. Complete list of optimization of reaction conditions	Page 2
2.	Scheme S1. Strategy to obtain stable hydrolyzed compound 8a	Page 3
3.	Scheme S2. Synthesis of 10a, 10b, 11a, 11b	Page 3
4.	Characterizations of compounds 2, 4a-4l, 5, 10b	Page 4
5.	LC-MS studies of hydrolyzed compounds 3, 8a-8l, 9, 11a, 11b	Page 7
6.	Copies of 1H and 13C NMR Spectra of compounds 2, 4a-4l, 5, 7a, 10b	Page 22
7.	Inhibition studies for all compounds	Page 37

entry	solvent	catalyst	time	ratio of 4a/5/2 ,	yield of 4a	yield of 5
				%	%	%
1	DMSO	HOAc (20 mol%)	24 h	no reaction		
2	DMF	HOAc (20 mol%)	24 h	no reaction		
3	THF	HOAc (20 mol%)	24 h	no reaction		
4	MeCN	HOAc (20mol%)	24 h	13/8/79		
5	Et ₂ O	HOAc (20 mol%)	24 h	13/6/81		
6	toluene	HOAc (20 mol%)	24 h	no reaction		
7	MeOH	HOAc (20 mol%)	24 h	9/8/91		
8	CH_2Cl_2	HOAc (20 mol%)	24 h	52//22/26		
9	CHCl ₃	HOAc (20 mol%)	24 h	48//15/37		
10	CH_2Cl_2	4-F-PhCO ₂ H(20 mol%)	24 h	47/5/48		
11	CH_2Cl_2	Proline (20 mol%)	24 h	7/0/93		
12	CH_2Cl_2	TFA (20 mol%)	24 h	decomposition		
13	CH_2Cl_2	2 M HCl (20 mol%)	24 h	26/4/70		
14	CH_2Cl_2	4-Me-PhCO ₂ H(20 mol%)	24 h	28/13/59		
15	CH_2Cl_2	3-F-5-CF ₃ -PhCO ₂ H(20 mol%)	24 h	50/25/25		
16	CH_2Cl_2	3,5-(CF ₃) ₂ -PhCO ₂ H(20 mol%)	24 h	46/17/37		
17	CH_2Cl_2	MeOCH ₂ CO ₂ H (20 mol%)	24 h	45/36/19		
18	CH ₂ Cl ₂	PhCH ₂ CO ₂ H (20 mol%)	24 h	23/10/67		
19	CH ₂ Cl ₂	Cyc.C ₆ H ₁₁ CO ₂ H (20 mol%)	24 h	13/10/77		
20	CH_2Cl_2	PTSA (20 mol%)	24 h	21/5/74		
21	CH_2Cl_2	(3,5-(CF ₃) ₂ -PhNH) ₂ CS (20	24 h	no reaction		
		mol%)				
22	CH_2Cl_2	diphenic acid (20 mol%)	24 h	47/23/30		
23	CH_2Cl_2	HOAc (100 mol%)	24 h	59//17/24		
24	CHCl ₃	HOAc (100 mol%)	24 h	44/11/45		
25	CH_2Cl_2	HOAc (100 mol%)	24 h	45/9/46	85	
26	CH_2Cl_2	MeOCH ₂ CO ₂ H (100 mol%)	48 h	0/100/0		75

Table S1. Complete list of optimization of reaction conditions

Scheme S1. Strategy to obtain stable hydrolyzed compound 8a. a.10% LiOH, MeOH, rt, 2 h, 95% yield. b. Ac₂O (3 equiv.), DMAP (0.1 equiv.), CH₂Cl₂, rt, 2 h, 95% yield.

Scheme S2. Synthesis of 10a, 10b, 11a, 11b. a. I₂ (2.2 equiv.), NaHCO₃ (3 equiv.), ether, rt, 24 h, 60% yield. b. ICl (2.2 equiv.), NaHCO₃ (3 equiv.), ether, rt, 24 h, 70% yield. c. 10% LiOH, MeOH, rt, 2 h, 95% yield.

Characterizations of compounds 2, 4a-4l, 5, 10a, 10b

HO MeOOC

2. ¹H NMR (500 MHz, CDCl₃) 10.91 (s, 1H), 7.93 (d, *J* = 8.5 Hz, 1H), 6.86 (d, *J* = 2.0Hz, 1H), 6.76-6.74 (m, 1H), 5.91 (s, 2H), 3.99 (s, 3H), 2.08 (s, 6H). ESI-MS Cacld. for C14H16NO3 (M+H⁺): m/z 246.1; found 246.0.

4a. ¹H NMR (500 MHz, CDCl₃) 10.93 (s, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.22-7.19 (m, 2H), 6.85 (d, J = 2.0 Hz, 1H), 6.75-6.68 (m, 4H), 5.99 (s, 1H), 4.08 (s, 2H), 3.99 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 162.1, 148.6, 145.3, 130.6, 129.2, 128.0, 125.8, 119.2, 117.2, 117.1, 117.1, 112.6, 111.7, 107.6, 52.5, 40.6, 12.8, 10.7. ESI-MS Cacld. for C21H21N2O3 (M-H⁺): m/z 349.2; found 349.2.

4b. ¹H NMR (500 MHz, CDCl₃) 10.92 (s, 1H), 7.94 (d, J = 8.5 Hz, 1H), 7.55 (d, J = 7.7 Hz, 2H), 7.47 (d, J = 8.6 Hz, 2H), 7.39 (t, J = 7.9 Hz, 2H), 7.26-7.23 (m, 1H), 6.86 (d, J = 1.9 Hz, 1H), 6.76-6.73 (m, 3H), 6.00 (s, 1H), 4.12 (s, 2H), 3.98 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.0, 162.1, 148.0, 145.2, 141.3, 130.6, 130.0, 128.6, 128.0, 127.9, 126.2, 125.9, 125.8, 119.2, 117.1, 117.1, 112.9, 111.7, 107.6, 52.5, 40.6, 12.8, 10.7. ESI-MS Cacld. for C27H25N2O3 (M-H⁺): m/z 425.2; found 425.0.

4d. ¹H NMR (500 MHz, CDCl₃) 10.92 (s, 1H), 7.94 (d, J = 8.5 Hz, 1H), 6.93-6.92 (m, 1H), 6.90 (d, J = 8.5 Hz, 1H), 6.88-6.74 (m, 3H), 6.70-6.67 (m, 1H), 6.02 (s, 1H), 4.10 (s, 2H), 4.00 (s, 3H), 3.84 (s, 3H), 2.08 (s, 3H), 2.07 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 162.1, 146.8, 145.4, 138.6, 130.6, 127.8, 125.8, 121.3, 119.3, 117.3, 117.1, 116.2, 111.6, 109.8, 109.3, 107.8, 55.3, 52.5, 40.3, 12.9, 10.8. ESI-MS Cacld. for C22H23N2O4 (M-H⁺): m/z 379.1663; found 379.1671.

4e. ¹H NMR (500 MHz, CDCl₃) 10.93 (s, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.11 (dd, J = 14.9, 8.0 Hz, 1H), 6.86 (d, J = 2 Hz, 1H), 6.75-6.73 (m, 1H), 6.43-6.35 (m, 3H), 5.97 (s, 1H), 4.01 (s, 2H), 4.00 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 165.1, 163.2, 162.1, 150.3, 150.3, 145.2, 130.7, 130.2, 130.1, 128.1, 125.9, 119.2, 117.1, 116.7, 111.8, 108.5, 107.5, 103.5, 103.3, 99.3, 99.0, 52.5, 40.5, 12.8, 10.7. ESI-MS Cacld.for C21H20FN2O3 (M-H⁺): m/z 367.1463; found 367.1469.

4f. ¹H NMR (500 MHz, CDCl₃) 10.93 (s, 1H), 7.95 (d, *J* = 8.5 Hz, 1H), 7.27 (d, *J* = 5.0Hz, 1H), 6.94 (d, *J* = 7.7 Hz, 1H), 6.87-6.86 (m, 2H), 6.81-6.79 (m, 1H), 6.76-6.6.74 (m, 1H), 5.98 (s, 1H), 4.10 (s, 2H), 4.00 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H). ESI-MS Cacld.for C22H20F3N2O3 (M-H⁺): m/z 417.1432; found 417.1442.

4g. ¹H NMR (500 MHz, CDCl₃) 10.93 (s, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.06(d, J = 8.5 Hz, 2H), 6.86 (d, J = 1.9 Hz, 1H), 6.76-6.73 (m, 1H), 6.63-6.62 (m, 2H), 5.98 (s, 1H), 4.06 (s, 2H), 4.00 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 162.1, 147.4, 145.2, 140.2, 130.7, 128.1, 125.9, 122.4, 119.2, 117.1, 116.8, 112.8, 111.8, 107.5, 52.5, 40.8, 12.8, 10.7. ESI-MS Cacld.for C22H20F3N2O4 (M-H⁺): m/z 434.1465; found 434.1392.

4h. ¹H NMR (500 MHz, CDCl₃) 10.92 (s, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.09-7.08 (m, 2H), 6.86 (d, J = 2.0 Hz, 1H), 6.76-6.74 (m, 1H), 6.66-6.64 (m, 2H), 5.99 (s, 1H), 4.07 (s, 2H), 4.00 (s, 3H), 2.83 (p, J = 6.9 Hz, 1H), 2.07 (s, 3H), 2.05 (s, 3H), 1.24 (s, 3H), 1.22 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 162.1, 146.7, 145.3, 137.7, 130.6, 127.9, 127.0, 125.8, 119.2, 117.4, 117.1, 112.7, 111.6, 107.6, 52.5, 40.9, 33.2, 24.3, 12.8, 10.7. ESI-MS Cacld.for C24H27N2O3 (M-H⁺): m/z 391.2109; found 391.2036.

4i. ¹H NMR (500 MHz, CDCl₃) 10.93 (s, 1H), 7.94 (d, *J* = 8.4 Hz, 1H), 7.14(dd, *J* = 6.8, 2.1 Hz, 2H), 6.85 (d, *J* = 1.9 Hz, 1H), 6.74(dd, *J* = 8.4, 2.0 Hz, 1H), 6.60-6.58 (m, 2H), 5.97 (s, 1H), 4.05 (s, 2H), 4.00 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 162.1, 147.1, 145.2, 130.6, 129.0, 128.1, 125.8, 121.6, 119.2, 117.1, 116.8, 113.7, 111.7, 107.4, 52.5, 40.7, 12.8, 10.7. ESI-MS Cacld.for C21H21CIN2O3 (M-H⁺): m/z 383.1168; found 383.1168.

4j. ¹H NMR (500 MHz, CDCl₃) 10.92 (s, 1H), 7.93 (d, *J* = 8.4 Hz, 1H), 7.26(d, *J* = 8.8 Hz, 2H), 6.84 (d, *J* = 2.0 Hz, 1H), 6.73(dd, *J* = 8.4, 2.0 Hz, 1H), 6.54 (d, *J* = 8.8 Hz, 2H), 5.96 (s, 1H), 4.03 (s, 2H), 3.99 (s, 3H), 2.06 (s, 3H), 2.04 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.0, 162.1, 147.5, 145.2, 131.8, 130.6, 128.1, 125.8, 119.2, 117.1, 116.8, 114.2, 111.7, 108.6, 107.4, 52.5, 40.6, 12.8, 10.7. ESI-MS Cacld.for C21H21BrN2O3 (M-H⁺): m/z 427.0663; found 427.0660.

4k. ¹H NMR (500 MHz, CDCl₃) 10.93 (s, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.19(d, J = 8.7Hz, 1H), 6.85 (t, J = 2.1 Hz, 1H), 6.75-6.73(m, 2H), 6.48 (dd, J = 8.8, 2.8Hz, 1H), 5.95 (s, 1H), 4.03 (s, 2H), 4.00 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H). ESI-MS Cacld. for C21H20Cl2N2O3 (M-H⁺): m/z 417.0778; found 417.0783.

41. ¹H NMR (500 MHz, CDCl₃) 10.92 (s, 1H), 7.94 (d, *J* = 8.4 Hz, 1H), 6.86 (d, *J* = 2.0 Hz, 1H), 6.81-6.71(m, 4H), 5.98 (s, 1H), 4.08 (s, 2H), 4.00 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H). ESI-MS Cacld. for C21H20F2N2O3 (M-H⁺): m/z 385.1369; found 385.1368.

5. ¹H NMR (500 MHz, CDCl₃) 10.94 (s, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.19-7.16 (m, 4H), 6.86 (d, J = 2.0 Hz, 1H), 6.76-6.65(m, 8H), 4.13 (s, 4H), 4.00 (s, 3H), 2.08 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 162.2, 148.5, 145.1, 130.7, 129.3, 129.2, 126.1, 119.4, 118.6, 117.6, 117.3, 116.6, 115.1, 113.2, 111.9, 52.6, 39.2, 10.7. ESI-MS Cacld.for C28H28N3O3 (M-H⁺): m/z 454.2; found 454.0.

10b. ¹H NMR (500 MHz, CDCl₃) 10.95 (s, 1H), 7.95 (d, J = 8.4 Hz, 1H), 6.79 (d, J = 2.0 Hz, 1H), 6.69-6.63 (m, 1H), 4.00 (s, 3H), 2.15 (s, 6H). ESI-MS Cacld.for C14H13I2NO3 (M-H⁺): m/z 495.9; found 496.0.

7a. ¹H NMR (500 MHz, CDCl₃) 8.06 (d, *J* = 8.3 Hz, 1H), 7.37-7.31 (m, 3H), 7.06-7.03 (m, 3H), 6.87 (d, *J* = 3.8 Hz, 1H), 5.85 (s, 1H), 4.69 (s, 2H), 3.89 (s, 3H), 2.35 (s, 3H), 2.00 (s, 3H), 1.83 (s, 3H), 1.66 (s, 3H). ESI-MS Cacld.for C25H27N2O5 (M+H⁺): m/z 435.2; found 435.0.

LC-MS studies of hydrolyzed compounds **3**, **8a-81**, **9**, **11a**, **11b** *MSD1 SPC, time=13.260 of D:\DATA\RONGJUN\1-139B.D ES-API, Pos, Scan, Frag: 70

Copies of ¹H and ¹³C NMR Spectra of compounds 2, 4a-4l, 5, 7a, 10b

Inhibition studies for all compounds

The inhibition assays were performed on 96-well plates at 25°C in 50 mM 3,3-dimethylglutarate buffer, pH 7.0, containing 1 mM EDTA with an ionic strength of 0.15 M adjusted by NaCl. The reaction was started by the addition of 50 μ l of the enzyme to 150 μ l of reaction mixture containing *p*-nitrophenyl phosphate (*p*NPP) and various concentrations of the inhibitor [final concentration of mPTPB: 20 nM, final concentration of *p*NPP: 3 mM (the *K*_m value)]. The reaction was quenched after 10 min by the addition of 50 μ l of 5 N NaOH. The absorbance at 405 nm was detected by a Spectra MAX340 microplate spectrophotometer (Molecular Devices). IC₅₀ values were calculated by fitting the absorbance at 405nm *versus* inhibitor concentration to the following equation:

$$AI/A0=IC_{50}/(IC_{50}+[I])$$

where AI is the absorbance at 405 nm of the sample in the presence of inhibitor; A0 is the absorbance at 405 nm in the absence of inhibitor; and [I] is the concentration of the inhibitor.

Expression and purification of recombinant mPTPB were described previously.¹

[1] B. Zhou, Y. He, X. Zhang, J. Xu, Y. Luo, Y. Wang, S. G. Franzblau, Z. Yang, R. J. Chan, Y. Liu, J. Zheng, Z.-Y. Zhang, *Proc. Natl. Acad. Sci. USA* **2010**, *107*, 4573-4578.