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S1. Facet Bending
To model out-of-plane deformations of the Miura-ori sheet,
facet bending must be taken into account. This is modelled
by introducing a diagonal fold line to the facets. To first order
approximation, the orientation of the additional diagonal fold
line does not affect the kinematics, as all other nodal displace-
ments are of higher-than-first order, as illustrated in Fig. 1.
In a stiffness analysis, however, the length of the fold line will
affect the mechanical response. In our analysis the shorter di-
agonal was selected, based on energetic considerations as well
as observations of physical models.

δ

δ

O(δ2/L)

O(δ2/L)

O(δ2/L)

Fig. 1: The facet bending of the Miura unit cell can be mod-
elled by introducing a diagonal fold line. To first order approx-
imation the choice of diagonal does not matter, as all other
nodal displacements are of higher order and will not feature
in the analysis (δ is an out-of-plane deformation, and L is an
in-plane dimension).

S2. Numerical Model
In our analysis the Miura-ori sheet is modelled as a
spherically-jointed framework: the fold lines are represented
by bars, and the vertices by frictionless joints. The under-
lying assumption is that the fold lines remain straight dur-
ing deformation. In physical folded sheets one may observe
deformations of the fold lines, for example in the folded hy-
perbolic paraboloid (‘hypar’) [1], but for strictly developable
deformations the geodesic curvature of a fold line must be
preserved [2].

The analysis of pin-jointed frameworks is well-established
in structural mechanics. Its mechanical properties can be
described by three linearised matrix equations: equilibrium,
compatibility and material properties [3].

At = f [1]

Cd = e [2]

Ge = t [3]

where A is the equilibrium matrix, which relates the internal
bar tensions t to the applied nodal forces f ; the compatibility
matrix C relates the nodal displacements d to the bar ex-
tensions e and the material equation introduces the axial bar
stiffnesses along the diagonal of G. It can be shown through
a straightforward virtual work argument that C = AT . The
linear-elastic behaviour of the truss framework can now be
described in terms of the vector subspaces of the equilibrium
and compatiblity matrices [4]. In our case, of interest is the
nullspace of the compatibility matrix, Cd = 0, as it provides
nodal displacements that, to first-order, are compatible with
zero bar elongations.

The compatibility matrix is the Jacobian of the bar length
constraints with respect to the nodal coordinates. This in-
sight can be used to introduce additional equality constraints
to the bar framework, such as dihedral angles between adjoin-
ing facets or fold lines. For instance, an angular constraint F
can be set up in terms of the dihedral fold angle φ between
two triangulated facets. Using vector analysis, the angle be-
tween two facets can be described in terms of cross and inner
products of the nodal coordinates p of the two facets,

F = sin (φ (p)) [4]

The Jacobian J then becomes

dφ =
1

cos (φ)

∑ ∂F

∂pi
dpi = Jd [5]

and can be concatenated with the existing compatibility ma-
trix [

C
J

]
d =

[
e

dφ

]
[6]

where the dpi are the elements of vector d. The nullspace of
this set of linear equations provides all nodal displacements d
that do not extend the bars, and do not violate the specified
angular constraints. For example, by constraining the bend-
ing of all facets, the single planar mechanism of the Miura-ori
sheet can be found. A similar approach will be used to add
tessellation boundary conditions to a single Miura unit cell.

Stiffness Equations. For a modal analysis of the folded Miura
sheets, a stiffness formulation is necessary. Equations 1–3 can
be combined into a single equation, relating external applied
forces f to nodal displacements d by means of the material
stiffness matrix K.

Kd = f [7]

K = AGC = CTGC [8]

In fact, this approach can straightforwardly be extended to
other sets of constraints by augmenting the compatibility ma-
trix.

K =

[
C
J

]T [
G 0
0 GJ

] [
C
J

]
[9]

In the case of the folded sheets, the additional stiffness terms
on the diagonal of GJ can be the bending stiffness of the fold
lines (Kfold) and facets (Kfacet). Once the material stiffness
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Fig. 2: The Miura-ori unit cell with additional fold lines diag-
onally across the facets. (a) The nodes are here labelled a–h
with dihedral fold angles φjk (mountain fold, with respect to
xy-plane, +ve). (b) The bounding planes visualise the tessel-
lation boundary conditions, ∠adg = ∠cfi and ∠abc = ∠ghi.
The two sets of bounding planes are defined respectively by
~dg × ~da, ~fc× ~fi, and ( ~ba× ~bc) × ~ca, ( ~hg × ~hi) × ~gi.

matrix is formulated, a study of its eigenvalues and eigen-
modes will reveal the softest, and therefore most dominant,
deformation modes of the folded sheets. In [5] the dependence
on the ratio Kfacet/Kfold and fold angle θ was studied for a
4 × 4 Miura-ori sheet with γ = 60◦ and a/b = 1. To model
rigid origami folding, the axial stiffness of the bars was taken
to be several order of magnitude (actually, 106) greater than
the bending stiffness for the facets and folds.

Coordinate Transformation. In the pin-jointed framework ap-
proach, all properties of the folded sheet are expressed in
terms of the nodal coordinates. When studying the unit cell
kinematics, the change in fold angle is more amenable to in-
terpretation. A transformation matrix T converts nodal dis-
placements d to changes in angle dφ:

dφ = Td [10]

where T is the Jacobian of the angle constraint between two
adjoining facets; see Eq. 5.

S3. Tessellated Unit Cell Kinematics
By adding tessellation boundary conditions to a single Miura-
ori unit cell, the global sheet deformation modes can be stud-
ied. Shown in Fig. 2 is a unit cell, with tessellation boundary
conditions visualised using bounding planes. The unit cell was
formulated as a pin-jointed framework, with the additional
boundary conditions:

∠adg =∠cfi [11]

∠abc =∠ghi [12]

(a)

(b)

Fig. 3: The two out-of-plane deformation modes for the
Miura-ori unit cell, with (a) the twisting and (b) the saddle-
shaped mode.

These angle constraints were formulated in terms of the nodal
coordinates, using straightforward vector equations. The Ja-
cobian of these tessellation boundary conditions with respect
to the nodal coordinates can be combined with the compat-
iblity matrix of the pin-jointed truss. The nullspace of the
combined Jacobian provides a vector space of nodal displace-
ments that, to first order approximation, satisfy both the bar
length constraints and the tessellation boundary conditions.

The kernel of the Jacobian for the tessellated Miura unit
cell has rank three, and therefore contains three independent
deformation modes. All allowable unit cell deformations will
be a linear combination of these three orthogonal modes. As
the choice of base vectors of the nullspace is arbitrary, some
further processing is required:

1. First, symmetry in the yz plane was imposed, by equat-
ing the change in facet folding angles: dφbd = dφbf and
dφeg = dφei. The result is a set of two symmetric defor-
mation modes.

(a) The planar mechanism was found through a linear com-
bination that preserves the planarity of facets. Folding
takes place only along the fold lines.

(b) Next, the symmetric subspace was orthogonalised
with respect to the planar mechanism, using a QR-
decomposition [7], to reveal the second symmetric de-
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formation mode: saddle-shaped bending. Here folding
takes place across all folds and facets. Note that all
facet bending has the same sign, i.e. all facets deform
either into a mountain or valley fold.

2. Second, the total nullspace was orthogonalised with respect
to the symmetric modes. The final orthogonal mode is
anti-symmetric: the twisting deformation mode. Here the
change in fold angles dφbe = dφeh = 0 due to symmetry
considerations. The facet angles share the same sign on ei-
ther side of the symmetry plane, but are anti-symmetric in
the yz-plane: φbf and φie both form mountain folds, while
φbd and φeg are valley folds, or vice versa.

The resulting out-of-plane unit cell deformation modes are
shown in Fig. 3. Note that the relationship between fold
angles, facet bending, and unit cell geometry was here only
studied numerically.
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Fig. 4: (a) For the saddle-shaped deformation mode of the
Miura-ori unit cell, the changes in curvature can be calculated
using the tilt angles of the bounding planes: κxx = dρxx/2S;
κyy = dρyy/2L. (b) The out-of-plane coupling coefficient
νκ = −κyy/κxx is calculated for a range of geometries γ and
fold angles θ; pictured are configurations with γ = 60◦ and
a/b = 1.

Curvature Calculation.From the three deformation modes,
the various expansion and coupling coefficients can be calcu-
lated, using coordinate transformations of the nodal displace-
ments. This can be achieved by looking at the translation
(planar mode), tilting (bending mode) and rotation (twist-
ing mode) of the bounding planes. Of primary interest is the
coupling between the unit cell curvatures κyy and κxx. The
curvatures can be calculated from the tilting of the bounding
planes:

κxx = dρxx/2S [13]

κyy = dρyy/2L [14]

where dρxx and dρyy follow from the nodal coordinates. The
out-of-plane coupling coefficient νκ = −κyy/κxx can then be
calculated, and is plotted in Fig. 4.

S4. Manufacture of Miura-Folded Meta-Materials
To demonstrate the kinematics of the folded meta-materials,
examples of Miura-folded shell structures and cellular meta-
materials were constructed. A stack of Miura-folded layers
made of card, and a single Miura-ori sheet folded from stain-
less steel are shown in Fig. 5 and Fig. 6 respectively.

While paper can be manipulated manually to form the
Miura-ori layers, making folded sheets from materials such as
steel requires specialised manufacturing methods. Two chal-
lenges must be overcome: due to the inherent folding kine-
matics it is difficult to simultaneously have both folded and
unfolded regions in the sheet material; and during the folding
process from a flat sheet, the sheets contract in-plane whilst
expanding in thickness. Schenk [5] provides a review of man-
ufacturing methods that aim to solve these problems.

Cold Gas Pressure Folding We here summarise the
method used to manufacture the stainless steel Miura-folded
sheet from Fig. 6. The method is based on that developed in
[6], and is particularly suited for prototyping purposes as it
requires minimal tooling.

To assist folding, the sheets are first locally weakened
along the fold lines. This can be achieved by locally thinning
the material along the fold lines by chemical etching. Fig. 7(a)
shows a stainless steel sheet (0.2 mm thickness) with the fold
pattern (3 mm wide fold lines) etched through half of the sheet
thickness. The mountain and valley folds were etched on op-
posite sides of the sheet; as a result, where the fold lines meet
at the vertices, the material was completely removed. This is
desirable, in order to avoid complex material deformations at
the vertices. Next, a series of freely hinged spacers (consisting
of metal plates joined together with adhesive tape to provide
the hinge) are placed along the fold lines of the etched plate;
see Fig. 7(b). A second identically etched plate is placed on
top of the spacers, parallel with the first sheet. The combi-
nation is packed into an air-tight bag, which connected to a
vacuum pump; Fig. 7(c). As the air is removed, the resulting
pressure difference bends the material along the fold lines; see
Fig. 7(d). The biaxial contraction during the folding process
is enabled by the freely hinging spacers. The fold depth is lim-
ited by the eventual contact between the two sheets, which is
determined by the height of the spacers.

The manufacturing process produced an accurately folded
sheet with no material deformation, other than bending along
the fold lines. When manufacturing deeper sheets, as would
be required for layers B in the stacked meta-material con-
figuration, some issues were encountered. Folding had to be
continued manually to the desired depth, and the resulting in-
accuracies prevented the stacking of the stainless steel Miura-
ori layers.
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(a) (b)

Fig. 5: A folded cellular meta-material constructed from card (200 gsm). The individual Miura-ori layers were manually scored
and folded. Dimensions of the tessellated unit cells are a = b = 25 mm and γ = 60◦.
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Fig. 6: A Miura-ori sheet of 0.2 mm stainless steel, manufactured using a cold gas pressure folding technique. To facilitate
folding, at the fold lines the material is locally thinned by means of chemical etching.
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Fig. 7: Manufacturing process of a Miura-ori sheet using a cold gas pressure folding technique: (a) the 0.2 mm stainless steel
sheet is locally thinned at the fold lines by chemical etching, to facilitate the folding; (b) freely hinged spacer plates are placed
along alternating ridges, before a second identically etched sheet is placed on top; (c) the combined sandwich is placed inside an
airtight bag connected to a vacuum pump; (d) after evacuating the air from the bag, the two Miura-ori sheet fold automatically
along the fold lines.
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