Supporting Information

Jiao et al. 10.1073/pnas.1222863110

SI Materials and Methods

Cell Culture, Reagents, and Antibodies. U937-mt-PLZF/RARa and U937-mt-P/R9 cells, which conditionally express promyelocytic leukemia zinc finger/retinoic acid receptor-a (PLZF/RARa) and promyelocytic leukemia/retinoic acid receptor-a (PML/RARa) fusion proteins, respectively, were kindly provided by P. G. Pelicci (University of Milano, Milan, Italy). In parallel, U937-mt-Bulk cells were used as parental control. All cell lines were maintained in RPMI 1640 supplemented with 10% (vol/vol) FBS (Gibco BRL) at 37 °C in a fully humidified atmosphere with 5% CO₂. COS-7 cells were maintained in DMEM supplemented with 10% (vol/vol) FBS. Primary murine leukemic cells were flushed from the tibia and femur of mice afflicted by full-blown myeloid leukemia, and cultured in DMEM containing 20% (vol/ vol) FBS. All-trans retinoic acid (ATRA), TSA, PMA, DMSO, theophylline, H89 (Sigma-Aldrich), and 8-CPT-cAMP (BI-OLOG Life Science) were prepared as described previously (1). The following antibodies were used: RARa (sc-551), Lamin B (sc-6216) (all from Santa Cruz), PLZF (ab39354), silencing mediator for retinoic acid and thyroid hormone receptors (SMRT; ab24551), nuclear receptor corepressor (NCoR1; ab24552), acetylated H3 (ab47915), trimethylated H3K4 (ab8580), and H3K27 (ab6002) (all from Abcam), acetylated H4 (06-866, Millipore), p-(Ser/Thr) PKA substrates (9621), p-Ser133-CREB (9198), CREB (9104) (all from Cell Signaling), and β -actin (a1978, Sigma).

Microarray Analysis. We performed a cDNA microarray analysis to profile the gene expression patterns in CD34⁺ bone marrow (BM) cells from both $PLZF/RAR\alpha$ (three PLZF-RAR α and two PLZF/RAR α -RAR α /PLZF animals) and PML/RAR α (four PML-RARα animals) transgenic mice with leukemia. Primary BM cells were harvested from the indicated transgenic mice with leukemia and subjected to immunomagnetic-positive selection using the CD34 monoclonal antibody (Miltenvi Bio-tech). Total RNA from the sorted cells was hybridized to the CodeLink UniSet Mouse I Bioarray chips (Amersham). Labeled chips were read by GenePix 4000B microarray scanner (Molecular Devices). Normalized data were filtered for minimal expression and then tested for gene-set enrichment using Gene Set Enrichment Analysis (GSEA) v2.0 (www.broad.mit.edu/gsea). GSEA enrichment results were filtered for statistical significance using a nominal P-value threshold of 0.05.

Immunophenotyping, Cytochemistry, and Histology. For immunophenotypic analysis, fresh 1×10^{6} BM cells were stained with anti-mouse Mac-1-FITC, Gr-1-PerCP-cy5.5, c-Kit-APC, CD34-PE, Sca-1-PE antibodies, and antilineage kit (BD Pharmingen) separately or in combination, and then analyzed on an LSR II system (BD Biosciences). For morphological analysis, cytospin slides containing aliquots of $3-4 \times 10^{4}$ cells of each sample were stained with Wright–Giemsa staining solution before microscopic inspection. For the nitroblue tetrazolium (NBT) reduction test, cells were incubated in PBS containing 0.1% NBT and 0.5 µg/mL PMA for 30 min at 37 °C. Cells were rinsed with

PBS three times before being spun to slides for microscopic examination. For histopathological analysis, sections of selected organs were prepared and stained with H&E by using standard protocol, as previously described (2).

Luciferase Reporter Analysis. The pRARE-tk-Luc reporter plasmid, which was designed to drive the expression of firefly luciferase reporter under the control of a synthetic core consensus sequence derived from the retinoic acid response element (RARE) in the human $RAR\beta 2$ gene, has been described previously (3). pRL-SV40 was used as internal control for transfection efficiency evaluation (Promega). Transient transfection of U937 cells was carried out using GenePulser II electroporation system (Bio-Rad). Before electroporation, U937-mt-P/ R9 and U937-mt-PLZF/RARa cells were cultured in medium containing 100 µM ZnSO₄ for 12 h to induce the expression of the PML/RARa and PLZF/RARa fusion protein, respectively. For electroporation, the complete medium was removed and $2 \times$ 10⁶ cells were resuspended in RPMI 1640 containing pRARE-tk-Luc (10 µg) and pRL-SV40 (2.5 µg). The electroporation parameters were 950 µF and 220 V at room temperature. Twelve hours after transfection, cells were treated with indicated materials for an additional 24 h. Then luciferase activities of each sample were detected with Dual-Luciferase Reporter Assay System (Promega) using Lumat LB9507 luminometer (Berthold).

Mammalian Two-Hybrid Analysis. Plasmids for mammalian twohybrid analysis including pGAL(RE)₅-tk-Luc, pNLVP16, pVP16-PLZF/RAR α , pGal4 empty vector, pGal4-SMRT and pGal4-NCoR1 were kindly provided by A. Zelent (Institute of Cancer Research, Sutton, United Kingdom) and R. N. Cohen (University of Chicago, Chicago, IL) (4, 5). The pVP16-PLZF/RAR α -S765A mutant was constructed by site-directed mutagenesis kit (Stratagene). COS-7 cells maintained in 24-well plates were transiently transfected using SuperFect (Qiagen) with 50 ng pVP16-PLZF/RAR α and 50 ng pGal4-SMRT or pGal4-NCoR1, in company with 600 ng pGAL(RE)₅-tk-Luc and 1.5 ng pRL-SV40. After 18 h, cells were treated with ATRA and/or 8-CPT-cAMP for additional 6 h. The activities of luciferase were detected as above.

ChIP. After ZnSO₄ induction, U937-mt-PLZF/RAR α cells were treated with ATRA and/or 8-CPT-cAMP, as described above. Next, 2×10^7 cells of each sample were collected for ChIP assay, as previously described (6). Specific primer pairs spanning RARE sites of individual genes are listed below.

RT-PCR and Western Blot. Real-time RT-PCR assays were carried out by using SYBR Green PCR Master Mix reagents on ABI PRISM 7000 SDS (Applied Biosystems). For Western blot, 20-µg proteins of each sample were fractioned by denatured SDS/PAGE and then transferred onto PVDF membrane (GE Healthcare). Specific antibodies were detected by using an ECL detection kit (Millipore). PCR Primers and ChIP-PCR primers of human or murine genes are listed below.

Assays	Genes	Forward primers (5' to 3')	Reverse primers (5' to 3')
For gene expression	Human <i>RARα2</i>	GAACCGGGCCTGTTTGCTCCCAGA	GGATGCTGCGGCGGAAG
	Human <i>RARβ2</i>	GATCGTGGAGTTTGCTAAACG	CAGAGGACCAAATCCAGCAT
	Human <i>CEBP</i> ε	AGCCGAGGCAGCTACAATC	TCACAGTGCAACTTTATTC
	Human <i>TGM2</i>	GCCACTTCATTTTGCTCTTCAA	TCCTCTTCCGAGTCCAGGTACA
	Mouse <i>RARα2</i>	AGACACGCAGACGGGTTG	GAGGATGCCACTCCCAGA
	Mouse <i>RARβ2</i>	CACCGGCATACTGCTCAA	CAAACGAAGCAGGGCTTG
	Mouse $CEBP \varepsilon$	TCCCCTGCAGTACCAAGTG	GTGCCTTGAGAAGGGGACT
	Mouse TGM2	CTCACGTTCGGTGCTGTG	CTCACGTTCGGTGCTGTG
	Mouse Cathepsin G	CTGACTAAGCAACGGTTCTGG	GATTGTAATCAGGATGGCGG
	Mouse Elastase2	TGGAGGTCATTTCTGTGGTG	CTGCACTGACCGGAAATTTAG
	Mouse MPO	GGAAGGAGACCTAGAGGTTGG	TCCCCATCCACCATGTTTTA
	Mouse Lactoferrin	TATTTCTTGAGGCCCTTGGA	TCTCATCTCGTTCTGCCACC
	Mouse MMP9	ACGGTTGGTACTGGAAGTTCC	CCAACTTATCCAGACTCCTGG
	185 RNA	CGCGGTTCTATTTTGTTGGTTT	TTCGCTCTGGTCCGTCTTG
For ChIP	hRARα2 promoter	GAGCTGCACAATGTCACACC	TCCTCCCCTTAACACACACC
	$hRAR\beta 2$ promoter	TCCTGGGAGTTGGTGATGTCAG	AAACCCTGCTCGGATCGCTC
	$hCEBP_{\mathcal{E}}$ promoter	GTGCCTCAAGAGCAGGTGG	GACCTACTACGAGTGTGAG

 Zhao Q, et al. (2004) Rapid induction of cAMP/PKA pathway during retinoic acid-induced acute promyelocytic leukemia cell differentiation. *Leukemia* 18(2): 285–292.

PNAS PNAS

- Zhang N-N, et al. (2008) RIG-I plays a critical role in negatively regulating granulocytic proliferation. Proc Natl Acad Sci USA 105(30):10553–10558.
- de Thé H, Vivanco-Ruiz MM, Tiollais P, Stunnenberg H, Dejean A (1990) Identification of a retinoic acid responsive element in the retinoic acid receptor beta gene. *Nature* 343(6254):177–180.
- Guidez F, et al. (1998) Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARalpha underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. *Blood* 91(8):2634–2642.
- Cohen RN, Putney A, Wondisford FE, Hollenberg AN (2000) The nuclear corepressors recognize distinct nuclear receptor complexes. *Mol Endocrinol* 14(6):900–914.
- Zhou G-B, et al. (2007) Oridonin, a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion protein and shows potent antitumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo. *Blood* 109(8):3441–3450.

Fig. 51. Establishment of a unique t(11;17) acute promyelocytic leukemia (APL) transgenic and transportable murine model. (A) Morphological features of cells collected from bone marrow (*Upper*) and spleen (*Lower*) of wild-type C57/BL6J mouse (*Left*), transgenic leukemic mouse (*Center*), and recipient of leukemia transplantation (*Right*) (magnification, 1,000×). (*B*) RT-PCR and Western blot results confirmed expression of the *PLZF/RARa* and *RARa/PLZF* fusion genes at the mRNA and protein level in tissues from a transplantable mouse model. (WT, wild-type; DT, dual transgene; BM, bone marrow; SP, spleen). (C) FISH analysis displays the integration of exogenous transgenes in the genome of the transplantable model. Detection of both *PLZF/RARa* and *RARa/PLZF* fusion genes in leukemic cells from mouse BM (magnification, 1,000×). (*D*) Cytogenetic analysis of the leukemic blasts cannot detect any gross chromosomal abnormalities. Cytogenetic analysis of leukemic cell from transplantable leukemic cells. Different doses (a dilution from 20 to 1 × 10⁶ cells) of nucleated cells collected from spleens of mice with full-blown leukemia were injected into each recipient mouse via tail vein. (*F*) Wright–Giemsa staining of BM and spleen cells from the mice inoculated with 1 × 10⁶ leukemic cells at days 5, 10, and 17 postinoculation, respectively (magnification, 1,000×). A normal C57BL/6J mouse was used as a wild-type control.

Fig. S2. GSEA of the microarray data of two distinct APL transgenic mouse models. (A) Heat map representation of the top 50 up- and down-regulated genes in *t*(11;17) APL compared with *t*(15;17) APL. *KIT* and *CDKN2D* (arrow) is up- and down-regulated in *t*(11;17) APL, respectively. (*B*) Representative gene sets were listed by normalized enrichment score (NES) in each APL model. GSEA plots showed particular gene sets that enriched in PML/RARα APL (*Upper*) or PLZF/RARα APL (*Lower*), respectively. (*C*) Significant target genes were listed with normalized expression score.

Fig. S3. 8-CPT-cAMP potentiates ATRA-mediated gene transactivation. (A) Results of NBT reduction assay of murine primary leukemic cells after 48-h treatment of differentiating agents [including 1 μ M SAHA, 25 nM TSA, 0.5 μ M VPA, 1 nM PMA, 1% (vol/vol) DMSO, 2 mM theophylline, 2 μ M piclamilast, 50 μ M 8-CPT-cAMP, 0.5 μ M eriocalyxin B, 1 μ M oridonin] with or without 1 μ M ATRA. (*B*) Morphological analysis of primary mouse leukemia blasts from t(11;17) APL transplantable mouse model after 8-CPT-cAMP (50 μ M) and/or ATRA (1 μ M) treatment for 2 d (magnification, 1,000x). (C) Result of Western blot with anti-RAR antibody showed the expression of PML/RAR or PLZF/RAR fusion proteins in U937-mt-Bulk (lanes 1 and 2), U937-mt-PR9 (lanes 3 and 4), and U937-mt-PLZF/RAR (lanes 5 and 6) cells, respectively, after ZnSO₄ exposure for 12 h (*Upper*, * denotes unspecific band), and the expression pattern of PLZF/RAR in U937-mt-PLZF/RAR (almes 5 and 6) cells, respectively, after ZnSO₄ exposure for 12 h (*Upper*, * denotes unspecific band), and the expression pattern of PLZF/RAR in U937-mt-PLZF/RAR (almes 5 and 6) cells, respectively, after ZnSO₄ exposure for 12 h (*Upper*, * denotes unspecific band), and the expression pattern of PLZF/RAR in U937-mt-PLZF/RAR (almes 5 and 6) cells, respectively after 0, 12, 24, 48, 72, 96, 120, 144, and 168 h of ZnSO₄ exposure, respectively). The amounts of Lamin B were used as internal control indicating equivalent loadings (*Lower*). (*D*) Semiquantitative RT-PCR results of *RARa2*, *RARβ2*, *CEBP*₆, and *TGM2* genes in U937-mt-PLZF/RAR cells after 8-CPT-cAMP (100 μ M) and/or ATRA (1 μ M) for 1 and 2 d. 18s rRNA was used as an internal control. (*E* and *F*) The expression of CD11b, CD11c and CD64 on U937-mt-PLZF/RAR cells after 8-CPT-cAMP (50 or 100 μ M) and/or ATRA (1 μ M) for 72 h. Each typical result out of three independent assays was shown.

Fig. S4. 8-CPT-cAMP enhances ATRA-induced gene transactivation through its Ser765 phosphorylation. (*A*) Phosphorylated CREB level is elevated upon 8-CPTcAMP addition. Both Ser133-phosporylated and total CREB proteins were detected by Western blot analysis. Loading was calibrated by β -actin (*Upper*). Quantitative analysis of the ratio of Ser133-phosphorylated and total CREB level was presented by calculating the band's integrated optical density. (*B*) 8-CPTcAMP couldn't potentiate the ATRA-induced dissociation between NcoR1 and PLZF/RAR α S765A mutant. A similar experiment was performed as above. Results are expressed as mean \pm SD of two independent experiments. ChIP assays in U937-mt-PLZF/RAR α (*C*, *i*) U937-mt-P/R9 (*C*, *ii*) cells after being treated with indicated agents. N.S. refers to "not significant" in comparison with Student *t* test.

Fig. S5. Combined treatment with 8-CPT-cAMP and ATRA reduces the tumor burden in t(11;17) APL transplantable mouse model in vivo. (*A*) Scheme of the short-term high-dose drug treatment in vivo. (*B*) Spleen index of mice receiving drug treatment in vivo. (*C*) Western blot of PLZF/RAR α protein in bone marrow cells from each treatment group was done by anti-RAR α antibody (*Upper*). Equal loading was assessed by β -actin (*Lower*). (*D*) PLZF/RAR α protein was degraded by combined therapy ex vivo. BM cells from t(11;17) APL mice were treated with 8-CPT-cAMP (100 μ M) and/or ATRA (1 μ M) ex vivo for 12 h. (*E*) Flow cytometry analysis of bone marrow cells from each treatment group by Mac-1 and Gr-1. Representative data of two independent experiments were shown. (*F*) Leukemic cell infiltrations of organs (BM, spleen, and liver) among mice receiving different treatments. Both cytospin (*Upper* two panels; magnification, 1,000×) and biopsy results (*Lower* two panels; magnification, 100×) of infiltration organs were presented.

Fig. S6. Identification and characterization of leukemia-initiating cell (LIC) population in t(11;17) APL transplantable mouse model. (A) Illustration of the sorting strategy of LIC population in BM from t(11;17) APL transplantable mouse model. (B) Sorted cells in step 1 were stained by Wright-Giemsa staining, and four representative pictures of each population were taken by an Olympus BX51 microscope (original magnification, 1,000×). (C) Cells isolated from step 2 (Mac-1⁺/Gr-1⁺/c-Kit⁺ and Mac-1⁺/Gr-1⁺/c-Kit⁻) were stained by Wright–Giemsa method. Four representative pictures of each population were taken by Olympus BX51 microscope (magnification, 1,000×). (D) Expression level of PLZF/RARα protein in both c-Kit-positive and -negative subsets. (E) Qualitative real-time RT-PCR determined the expression of RA-response genes (RARα2, RARβ2, CEBPε, and TGM2) (Upper), and granulocyte-specific genes [Cathepsin G, Elastase2 (Ela2), Myeloperoxidase (MPO), Lactoferrin, and MMP9] (Lower) in sorted cells from Mac-1⁺/Gr-1⁺/c-Kit⁺ and Mac-1⁺/Gr-1⁺/c-Kit⁻ subpopulations. Representative data of two independent experiments are shown. (F) Survival curves of secondary recipients inoculated by different sorted populations from indicated steps. (i) 200cell and 50-cell doses of sorted populations were transplanted in step 1 isolation. (ii) 200-cell and 50-cell doses of sorted populations were transplanted in step 2 isolation. (iii) Four c-Kit⁺ populations were isolated and transplanted at 50-cell dose.

Fig. 57. In vivo combined treatment with 8-CPT-cAMP, 5-Aza-2-Deoxycytidine (DAC) and different doses of ATRA improves the survival of transplantable *t*(11;17) APL mice by promoting clearance of LICs. (*A*) A transplantable *t*(11;17) APL model was independently established and nude mice were treated as previously described (1), using APLs from PLZF/RARα-RARα/PLZF mice (2). (*i*) The survival curve of primary mice treated with indicated therapies for 10 d, 7 d after inoculation. (*ii*) Spleen weight of moribund mice killed at day 8. (*iii*) The survival curve of the secondary recipients inoculated with BM APL cells derived from treated mice at day 8. (*B*) Similar experiments were carried out using DAC (5 mg·kg·d), given intraperitoneally, and ATRA. (*i*) Spleen weight of mice killed at day 4 for LIC assessment. RA10, ATRA 10 mg·kg·d; RA100, ATRA 100 mg·kg·d.

1. Nasr R, et al. (2008) Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat Med 14(12):1333–1342.

2. He LZ, et al. (2000) Two critical hits for promyelocytic leukemia. Mol Cell 6(5):1131-1141.

Table S1. Identification of LIC population by limited dilution assay in BM transplantation experiment

Cell-sorting strategy	Sorted population (donor <i>n</i>)	Cell doses	APL incidence of recipients*	LIC frequency (95% Cl)	P value [†]
First sorting step [‡]	Mac-1 ⁺ /Gr-1 ⁺ ($n = 2$)	1,000	3/3 (100%)	1 in 124 (54–283)	<i>P</i> = 0.0174
		200	3/5 (60%)		
		50	4/7 (57%)		
	$Mac-1^{-}/Gr-1^{+}$ (n = 2)	1,000	2/2 (100%)	1 in 668 (219–2041)	
		200	1/5 (20%)		
		50	0/7 (0%)		
	$Mac-1^{+}/Gr-1^{-}$ (n = 2)	1,000	2/3 (67%)	1 in 730 (259–2,059)	
		200	2/5 (40%)		
		50	0/7 (0%)		
	$Mac-1^{-}/Gr-1^{-}$ (n = 2)	5,000	4/4(100%)	1 in 2,745 (1,626–4,567)	
		1,000	0/3 (0%)		
		200	0/4 (0%)		
Second sorting step [§]	Mac-1 ⁺ /Gr-1 ⁺ / c-Kit ⁺ ($n = 2$)	1,000	3/3 (100%)	1 in 59 (39–89)	<i>P</i> = 0.0164
		200	4/5 (80%)		
		50	6/7 (86%)		
	Mac-1 ⁺ /Gr-1 ⁺ / c-Kit ⁻ ($n = 2$)	1,000	2/2 (100%)	1 in 432 (155–1207)	
		200	2/5 (40%)		
		50	0/6 (0%)		
c-Kit ⁺ populations [¶]	c-Kit ⁺ /Mac-1 ⁺ /Gr-1 ⁺ (n = 2)	50	2/3 (67%)		<i>P</i> = 0.0104
	$c-Kit^{+}/Mac-1^{-}/Gr-1^{+}(n = 2)$	50	0/4 (0%)	N.A.	
	$c-Kit^+/Mac-1^+/Gr-1^-$ (n = 2)	50	0/4 (0%)		
	c-Kit ⁺ /Sca-1 ⁺ /Lin ⁻ ($n = 2$)	50	0/6 (0%)		

N.A., not available.

PNAS PNAS

*APL incidence represented as "Recipients died from APL/Total recipients."

[†]Comparison between groups of Mac-1⁺/Gr-1⁺ and Mac-1⁻/Gr-1⁺ treatment in first BM transplantation (BMT) experiment. Comparison between groups of Mac-1⁺/Gr-1⁺/c-Kit⁻ and Mac-1⁺/Gr-1⁺/c-Kit⁻ treatment in second BMT experiment. Two-tailed *P* value was estimated by limited-dilution assay analysis (L-software; StemCell). Comparison of the differences of the survival curves of four groups. Two-tailed *P* value was calculated by Long-rank algorithm for survival analysis. [‡]Follow-up time was up to 90 d.

[§]Follow-up time was up to 135 d.

[¶]Follow-up time was up to 120 d.

Table S2.	8-CPT-cAMP and ATRA co	mbinato	rial therapy can	target LIC (Mac-1 ⁺ /Gr	-1 ⁺ /c-Kit ⁺) an	id reduce LIC fre	equency and ab	solute number in t(1	1;17) APL model	
TING	Treatment	Cell	APL incidence	LIC frequency		Whole BM [‡]	Mac-1 ⁺ /Gr-1 ⁺ /	Mac-1+/Gr-1+/c-Kit+ //106 colley	Absolute number of	
BINI	(donor n)	doses	or recipients"	(17 % 66)	r value	(XIN CEIIS)	C-NIL (%)	(XIU) CEIIS)	ric_(xin cells)	r value
First BMT ^{II}	Untreated ($n = 2$)	1,000	3/3 (100%)	1 in 26 (10–64)	P = 0.2625	18.25 ± 3.54	45.00 ± 1.84	8.18 ± 1.26	0.3146 ± 0.048	P = 0.3002
(day 27)		200	5/5 (100%)							
		50	6/7 (86%)							
	8-CPT-cAMP (<i>n</i> = 2)	1,000	3/3 (100%)	1 in 72 (32–160)		22.50 ± 1.77	36.00 ± 4.95	8.06 ± 0.48	0.1119 ± 0.0066	
		200	4/5 (80%)							
		50	5/7 (71%)							
	ATRA ($n = 2$)	1,000	3/3 (100%)	1 in 417 (164–1063)		28.38 ± 0.88	19.70 ± 13.86	5.53 ± 3.76	0.013 ± 0.0090	
		200	2/5 (40%)							
		50	(%0) //0							
	cAMP+ATRA (n = 2)	1,000	2/2 (100%)	1 in 1047 (283–3875)		41.75 ± 5.30	11.00 ± 0.47	4.61 ± 0.78	0.004398 ± 0.00074	
		200	0/2 (0%)							
		50	0/2 (0%)							
	Ara-C ($n = 2$)	1,000	3/4 (75%)	1 in 331 (118–929)		43.25 ± 1.41	10.88 ± 1.41	4.69 ± 0.45	0.036 ± 0.0035	
		200	2/3 (67%)							
		50	2/3 (67%)							
Second BMT	** ATRA ($n = 4$)	1,000	8/10 (80%)	1 in 428 (211–869)	P = 0.0054	39.67 ± 18.24	28.87 ± 17.99	8.99 ± 4.74	0.021 ± 0.011	P = 0.0374
(day 41)		200	4/5 (80%)							
	cAMP+ATRA ($n = 3$)	1,000	2/10 (20%)	1 in 2483 (900–6844)		46.11 ± 14.63	16.98 ± 20.01	5.94 ± 5.17	0.0024 ± 0.0021	
		200	2/6 (33%)							
*APL inciden ⁺ [†] Comparison	ce represented as "Recipient: of LIC frequency between gr	s died froi oups of A	m APL/total recipie NTRA and cAMP+A	nts." TRA treatment in each BN	MT experiment.	. Two-tailed <i>P</i> valı	ue was estimated l	by limited-dilution assay	y analysis (L-calc software	; StemCell).
	povino ovor ovitorititation	from the	former and tibler							

[‡]Data for LIC quantification were derived from two femurs and tibias. [§]Absolute number of LICs of each group was calculated by multiplying absolute number of Mac-1⁺/Gr-1⁺/G-1⁺/Gr-1⁺/F by LIC frequency. [¶]Comparison of absolute number of LIC between groups of ATRA and cAMP+ATRA treatment in each BMT experiment. Two-tailed *P* value was estimated by Student *t* test.

^{II}Follow-up time was up to 120 d. **Follow-up time was up to 105 d.

PNAS PNAS