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I. Control Simulations. A series of control simulations were per-
formed to confirm that the difference in preferred mesh size is
essential to produce component segregation and blebbing. Fig. S1
presents results from systems where the thickness is constant,
meaning that the A- and B-type components have equal thickness
and thus, equal elastic parameters. The fraction of the components
as well as the mesh size area scaling factor are varied within the
same range as in Fig. 1B. We emphasize that the only difference
between the A- and B-type components in these simulations is the
preferred mesh size. For higher values of f, wrinkling in the A-type
regions is more apparent than when hA= 2hB in Fig. 1B, which is to
be expected, because here, the A-type component has smaller
elastic moduli. Nonetheless, the overall results here are qualita-
tively very similar to those results when the A-type component is
thicker than the B type, both in terms of component arrangements
and the formation of bleb-like structures. We can, thus, conclude
that the difference in preferred mesh size is sufficient to cause
component segregation as well as blebbing.
Fig. S2 presents results from systems where the A-type com-

ponent is set to be two times as thick as the B type and thus, has
a larger resistance to stretching and bending. However, the mesh
size area scaling factor has been set to 1.0 (MA = MB = 1.0), such
that neither component has a preference to develop a larger
mesh size. It is clear that, at any component fraction, segregation
is not induced, and no deformation occurs. From these simu-
lations, we can conclude that a difference in the preferred mesh
sizes of the two components is essential for component segre-
gation and blebbing.

II. Derivation of Bending Energy Expression. The expressions for the
elastic energyof thenuclear laminmeshwork thatweuse (Eqs.1 and
2) are standard expressions for elastic energy of thin sheets and
shells introduced in the present form by Koiter (1). Under the so-
called Kirchhoff–Love assumptions (2), these expressions can be
derived from a fully 3D elastic theory by integrating along the shell
thickness, which is discussed in detail in ref. 3. The shell is repre-
sented by its 2D neutral surface (i.e., an imaginary midsurface
along which bending and stretching are decoupled). The derivation
relies on the assumption of a small thickness t, with t acting as
a small expansion parameter. In other words, t � L, where L is
some characteristic lateral length scale. It is worth noting that it is
necessary to keep subleading terms (∝ t3) to properly capture the
energetics of the isometric bending deformations. We also note
that, although higher-order terms may arise in the expansion, it was
shown by Koiter (4) that the terms given in Eqs. 1 and 2 are the only
two terms that are compatible with the Kirchhoff–Love assump-
tions. Themodel that we use to describe the stretching and bending
energies is analogous to the model used in, for example, ref. 5.
Because the bending energy expression in Eq. 2 is not in

a standard form, we present here some of the steps taken to
arrive at the expression. We begin from a description of the 2D
bending energy in terms of the curvature tensor, bβα, which is
symmetric (bβα = bαβ):
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The bending energy in Eq. S1 is nonzero when the curvature
tensor is nonzero (i.e., an energy penalty is provided when the
shape differs from a plane). We instead specify that our bending
energy will be nonzero when the curvature tensor of the surface
differs from the curvature of an arbitrary reference surface,
denoted as b

β
α, as in ref. 5. Thus, we replace the curvature tensor bβα

in the bending energy in Eq. S1 with this difference, ðbβα − b
β
αÞ:
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We next substitute the definitions for the mean and Gaussian
curvatures, H = ðb11 + b22Þ=2 and K = b11b

2
2 − ðb21Þ2, respectively.

We also substitute the reference mean and Gaussian curvatures,
H0 = ðb11 + b22Þ=2 and K0 = b11b

2
2 − ðb21Þ2, respectively, to arrive at
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Lastly, although the reference metric can be chosen to have any
arbitrary form, we specify it to be a sphere, and thus, b11 = b22 =
1=R0 =H0 and b21 = 0, allowing additional simplification:
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from which Eq. 2 follows.
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Fig. S1. Low-energy configurations for systems with hA = hB, with component fractions (i) f = 0.2, (ii) f = 0.4, (iii) f = 0.6, and (iv) f = 0.8. From left to right, the
columns show systems with mesh area scaling factors of MA = 1.2, 1.5, and 2.0, respectively. The results here are similar to the results in Fig. 1B, where the
thickness of the A-type component is two times as large as the B-type component. Here, the only difference between the components is the preferred mesh
size, and segregation and bleb-like deformations are observed in these systems as well.

Fig. S2. Low-energy configurations for systems withMA =MB = 1 and hA = 2hB for component fractions (i) f = 0.2, (ii) f = 0.4, (iii) f = 0.6, and (iv) f = 0.8. With
no difference in the preferred mesh sizes of the components, no segregation is observed, and no deformations from a sphere are observed.
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