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Supplementary note

In examining the differential equations for the models in Cui et al. [1], we found the following two
errors.

Misplaced consumption term for activator

The reaction for the activation of Bax is described in Table 1 of [1] (“Chemical reaction network
scheme”) as

InBax + Act→ AcBax + Act

In the list of ODEs provided in Table 2, the term describing the velocity of this reaction is listed
(correctly) as

J1 = k1 · [InBax] · [Act]

The term J1 appears in the following equations shown in Table 2 (some terms omitted for clarity):

d[InBax]/dt = JInBax − J1 − J9
d[AcBax]/dt = JAcBax + J1 − J2 − . . .

d[Act]/dt = JAct − J1 − J3 + . . .

The error is that J1 appears as a negative term in the equation for [Act], implying that activator
is actually consumed in the reaction InBax + Act→ AcBax + Act. However, because this is a
one-step “catalytic” reaction, with no intermediate complex formed, activator should not be
consumed.

An additional indication that this an error is that in the equations for the “Direct” model from
Chen et al. [2], on which the Cui et al. [1] models are based, the equation for Activator does not
have this negative term. The appearance of this error in the derived model, but not the original
model, highlights the tendency of “copy-and-paste” model reuse to introduce inadvertent errors.

Missing term for Bax inactivation

The reaction for Bax inactivation is listed in Table 1 of Cui et al. [1] (“Chemical reaction network
scheme”) as

AcBax→ InBax

In the list of ODEs provided in Table 2, the term describing the velocity of this reaction is J5:
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J5 = k8 · [AcBax]

J5 appears correctly as a negative term in the equation for activated Bax:

d[AcBax]/dt = JAcBax + J1 − J2 − J4 − J5 + J8 − J9 − 2 · J10

However, the equation for inactive Bax omits J5 completely, where it should be incorporated as a
positive term:

d[InBax]/dt = JInBax − J1 − J9

This means that active Bax is consumed with the rate defined by J5, but the corresponding
quantity of inactive Bax is not restored, leading to a loss of Bax over time. As with the error in
the equation for Activator described above, the equation for Bax is correct in the original model
from Chen et al. [2], indicating that the error was likely introduced in the process of duplicating
the original model, or in the transcription of ODEs for publication.
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PySB syntax

PySB model definition statements support some idiomatic syntax elements which may appear
unusual to a Python programmer, but which provide economy of expression and a close mapping
to the syntax of established rule-based modeling languages BNGL and Kappa. PySB defines
overloaded operators and a so-called “SelfExporter” system which help give PySB model
definition statements the feel of a domain-specific language like BNGL or Kappa within the
general-purpose Python programming langage. Modelers are not required to use the overloaded
operators and SelfExporter functionality, but they are highly recommended for ease of readability.

Overloaded operators simplify rule expression syntax

Python’s built-in operators generally work with just a small set of built-in types, and an
exception will be raised if they are applied to objects of any other class. For example “+” applies
to numeric types (implementing mathematical addition), and separately to lists and strings
(implementing concatenation). However a class may implement several special methods to
overload these operators and allow them to be applied to its instances. A class is free to define
any desired semantics in its overloaded operator implementations, but operator precedence and
arity is fixed by the Python language grammar and cannot be altered via operator overloading.

PySB defines several classes representing nodes in an abstract syntax tree (AST) representation
of a rule in the BNGL/Kappa domain-specific languages (DSL). These classes define overloaded
operators allowing a modeler to write a Python expression which is visually very similar to one of
these rules and evaluates to the corresponding AST. Whereas BNGL and Kappa use a standalone
program to parse and simulate a model defined in a DSL, The PySB AST classes with operator
overloading allow model components to be declared with Python program statements which
evaluate directly to object representations of the given components. In this way Python itself
serves as the parser for PySB models, and model components become live Python objects. The
following table lists the AST classes and the syntactic elements they represent:

Class Description

MonomerPattern A pattern which matches instances of a given monomer, with optional re-
strictions on the state of certain sites.

ComplexPattern A bound set of MonomerPatterns, i.e. a pattern to match a complex.
ReactionPattern A pattern for the entire product or reactant side of a rule.
RulePattern A container for the reactant and product patterns of a rule expression.
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The operators to overload were chosen to fulfill two requirements. First, they must have the
proper relative precedence in the Python grammar to minimize the need for parentheses and keep
rule expressions uncluttered. Second, they should have a visual appearance as close as possible to
the operators used in BNG and Kappa to help maintain consistency within the rule-based
modeling ecosystem. The following table lists the overloaded operators and their semantics:

Operator Description

( ) Apply site conditions to a Monomer to create a MonomerPattern
% Combine MonomerPatterns to create a ComplexPattern
+ Combine ComplexPatterns to create a ReactionPattern
<> Combine two ReactionPatterns to create a reversible RulePattern
>> Combine two ReactionPatterns to create an irreversible RulePattern

For those who are familiar with BioNetGen Language (BNGL), here are some actual expressions
in both PySB and BNG syntax (Kappa is similar to BNGL):

PySB expression BNGL equivalent

R(a=None) R(a)
R(a=1) % R(b=1) R(a!1).R(b!1)
R(a=None) + R(b=None) R(a) + R(b)
R(a=None) + R(b=None) <> R(a=1) % R(b=1) R(a) + R(b) <-> R(a!1).R(b!1)
R(a=None) + R(b=None) >> R(a=1) % R(b=1) R(a) + R(b) -> R(a!1).R(b!1)
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Below is a formal grammar for PySB rule expressions. Symbols corresponding to the Python AST
node classes are shown in bold, using the actual class name. Symbols which are self-explanatory
such as “site-name” and “string” are not expanded further.

〈MonomerPattern〉→ 〈monomer〉 ‘(’ 〈site-conditions〉 ‘)’

〈site-conditions〉 → 〈site-name〉 ‘=’ 〈condition〉 ‘,’ 〈site-conditions〉
| 〈site-name〉 ‘=’ 〈condition〉
| φ

〈condition〉 → 〈string〉
| 〈bond-number〉
| ‘(’ 〈bond-number-list〉 ‘)’
| ‘(’ 〈string〉 ‘,’ 〈bond-number〉 ‘)’

〈bond-number-list〉 → 〈bond-number〉 ‘,’ 〈bond-number〉
| 〈bond-number-list〉 ‘,’ 〈bond-number〉

〈ComplexPattern〉 → 〈ComplexPattern〉 ‘%’ 〈ComplexPattern〉
| 〈MonomerPattern〉

〈ReactionPattern〉 → 〈ReactionPattern〉 ‘+’ 〈ReactionPattern〉
| 〈ComplexPattern〉

〈RulePattern〉 → 〈ReactionPattern〉 〈rule-op〉 〈ReactionPattern〉

〈rule-op〉 → ‘<>’ | ‘>>’
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Excessive or haphazard use of operator overloading can certainly lead to confusing code, but we
felt the construction of rule ASTs was a reasonable application with a limited scope. For
comparison, here are several PySB rule expressions written using both overloaded operators and
explicit AST assembly. The explicit forms of the first four subexpressions look simple enough in
isolation, but the economy of the overloaded operators becomes readily apparent upon
considering the final full RuleExpression.

Operators Explicit AST assembly

mp = R(a=1) mp = MonomerPattern(R, {’a’: 1})
cp = mp1 % mp2 cp = ComplexPattern([mp1, mp2])
rp = cp1 + cp2 rp = ReactionPattern([cp1, cp2])
re = rp1 <> rp2 re = RuleExpression(rp1, rp2, True)
R(a=None) + R(a=None) <> R(a=1) % R(a=1) RuleExpression(

ReactionPattern([
ComplexPattern([
MonomerPattern(R, {’a’: None})

]),
ComplexPattern([
MonomerPattern(R, {’a’: None})

])
]),
ReactionPattern([
ComplexPattern([
MonomerPattern(R, {’a’: 1}),
MonomerPattern(R, {’a’: 1})

])
]),
True

)

SelfExporter functionality streamlines model construction

PySB also includes functionality to streamline the process of creating components and adding
them to models, using a class called SelfExporter. Like all object constructors in Python, each
of the component constructors (Monomer, Rule, Parameter and Compartment) return an
instance of the requested component. In a typical programming paradigm, it would be necessary
to explicitly retain a reference to the created object in a variable for later use. For example,
creating a monomer “R” and parameter “kf” for use in a rule declaration would require the
following statements:

R = Monomer(’R’, [’a’])

kf = Parameter(’kf’, 1)

dimerize = Rule(’dimerize’, R(a=None) + R(a=None) >> R(a=1) % R(a=1), kf)

Here the Monomer constructor is used to create an instance of a Monomer object named “R”,
stored in the local variable R. From a modeling perspective, one can immediately see a potentially
confusing aspect of this approach: we now have to mentally keep track of two “names” for the
same monomer, one the variable storing the reference to the object (R, which must be used to
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build up the expression for the dimerization rule) and one the descriptive name assigned to the
new object (“R”). Even though we have chosen to use the same name for both the object’s
descriptive name and its variable in order to minimize confusion, maintaining this consistency
requires mental effort on the part of the modeler and clutters the code making it harder to read.

In addition to managing the issue of naming, we must also add the newly created Monomer,
Parameter and Rule objects to a model. To do this, we must call the model.add component

method on each component object:

model = Model(’model’)

model.add_component(R)

model.add_component(kf)

model.add_component(dimerize)

This repetition adds further visual noise to the model code, and accidentally omitting the
add component call for one or several components can lead to errors far from the site of
declaration (in the case of a Monomer or Parameter used in a distant Rule) or worse, subtle
errors in model behavior (in the case of a Rule).

In a typical modeling scenario, creation of model components tends to follow the pattern
described above, that is:

1. Create a component using the appropriate constructor and assign it to a variable in the
current namespace.

2. Add the created component to the current model.

The repetition of this pattern for every component in a model tends to be verbose and obscure
the model structure; it also creates opportunities for error as described above.

PySB includes a helper class called SelfExporter that streamlines model definition by
automatically performing the above steps. Using the functionality provided behind the scenes by
SelfExporter, we can now simply write:

Model(’model’)

Monomer(’R’, [’a’])

Parameter(’kf’, 1)

Rule(’dimerize’, R(a=None) + R(a=None) >> R(a=1) % R(a=1), kf)

In the above example, when the constructor Model(’model’) is called, the SelfExporter

“exports” a reference to the model by creating a global variable called model in the current
namespace and assigning a reference to the created Model object to it. (This is possible because by
using the Python module inspect, global variables in any accessible namespace can be accessed
and manipulated programmatically: they are stored as a dictionary linking the name of the
variable (“model”) to its value (a reference to the new Model object). The SelfExporter can add
global variables by modifying the entries in this dictionary.)
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When the second statement, Monomer(’R’, [’a’]), is executed, the SelfExporter performs a
similar action: it creates a new variable, R, and assigns to it the reference to the new object (a
Monomer object given the name “R”). However, in this case it also takes a second action: it adds
the new Monomer object R to the set of Monomer objects associated with the currently defined
model, model. The process for the Parameter object is exactly the same: a global variable kf for
the new object is created and added to model.

Finally, because they have been “exported” as variables by the behind-the-scenes action of the
SelfExporter, the Monomer variable R and the Parameter variable kf are now globally accessible,
and we can use both in the Rule(...) definition that follows. The Rule object itself is similarly
exported and added to the model.

To summarize, the execution of the above code results in:

• The addition of four variables to the global namespace: model, R, kf, and dimerize

• The addition of the model components R, kf, and dimerize to the model model.

It should be noted that though it is the default behavior, the use of SelfExporter functionality
is entirely optional. In certain sophisticated modeling scenarios involving the dynamic creation of
multiple alternative models, the explicit approach to component creation and assignment may be
preferred. However, we have found that the SelfExporter substantially simplifies the most
common modeling use cases. A summary of the syntax for the simple example described above,
with and without the action of SelfExporter, is shown below:

With SelfExporter Without SelfExporter

Model(’model’) model = Model(’model’)
Monomer(’R’, [’a’]) R = Monomer(’R’, [’a’])

model.add component(R)
Parameter(’kf’, 1) kf = Parameter(’kf’, 1)

model.add component(kf)
Rule(’dimerize’,

R(a=None) + R(a=None) >> R(a=1) % R(a=1),
kf)

dimerize = Rule(’dimerize’,
R(a=None) + R(a=None) >> R(a=1) % R(a=1),
kf)

model.add component(dimerize)

The following comparison with the BNGL syntax for the same simple model shows how the
combined use of overloaded operators and the SelfExporter give models written in PySB the feel
of a domain-specific language embedded in Python:
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PySB statement BNGL equivalent

Model(’model’) (not needed)
Monomer(’R’, [’a’]) begin molecule types

R(a)
end molecule types

Parameter(’kf’, 1) begin parameters
kf 1

end parameters
Rule(’dimerize’,

R(a=None) + R(a=None) >> R(a=1) % R(a=1),
kf)

begin reaction rules
dimerize: R(a) + R(a) -> R(a!1).R(a!1) kf

end reaction rules
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Figure S1

def catalyze_one_step(enz, sub, prod, kf):
    # Create the rule
    r = Rule('catalyze_one_step_%s_%s_to_%s' %
          (enz.monomer.name, sub.monomer.name, prod.monomer.name),
          enz() + sub() >> enz() + prod(),
          kf)
    return r

catalyze_one_step(C8(bf=None), Bid(state='U', bf=None),
                  Bid(state='T', bf=None), kf)  

Example Macro Call

Basic Implementation

BNGL Rules

ODEs

C8(bf) + Bid(bf,state~U) -> C8(bf) + Bid(bf,state~T)  kf

C8:   ds0/dt =  0
Bid:  ds1/dt = -kf*s0*s1
tBid: ds2/dt =  kf*s0*s1

def catalyze(enz, e_site, sub, s_site, prod, klist):
    kf, kr, kc = klist   # Get the parameters from the list
    
    # Create the rules
    rb = Rule('bind_%s_%s' % (enz().monomer.name, sub().monomer.name),
           enz({e_site:None}) + sub({s_site:None}) <>
           enz({e_site:1}) % sub({s_site:1}),
           kf, kr)
    rc = Rule('catalyze_%s%s_to_%s' %
           (enz().monomer.name, sub().monomer.name, prod().monomer.name),
           enz({e_site:1}) % sub({s_site:1}) >>
           enz({e_site:None}) + prod({s_site:None}),
           kc)
    return [rb, rc]

Basic Implementation

A) catalyze macro basic implementation

B) catalyze_one_step macro

(A) Simplified implementation of the catalyze macro. The Rule objects for the binding and catalytic steps
are created according to defined templates, with the species identities (enzyme, substrate, and product),
binding site names, and parameters filled in from the arguments to the macro. (B) catalyze one step.

This macro models a “one-step” approximation of catalysis according to the reaction scheme E+S → E+P .
The macro creates a single catalysis rule according to the prescribed template, which can then be used to
generate the BNGL rule and set of ODEs shown below. The full implementation of the catalyze and
catalyze one step macros, with documentation and handling of various special cases, can be found in the
macros.py file in the PySB source code online (http://pysb.org).
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Figure S2
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Bax(bf=None, s1=4, s2=5, state=A) %
Bax(bf=None, s1=5, s2=2, state=A) %
CytoC(bf=1, state=M)
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s61
Bax(bf=1, s1=2, s2=3, state=A) %
Bax(bf=None, s1=3, s2=4, state=A) %
Bax(bf=None, s1=4, s2=5, state=A) %
Bax(bf=None, s1=5, s2=2, state=A) %
Smac(bf=1, state=M)
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s62
Bak(bf=1, s1=2, s2=3, state=A) %
Bak(bf=None, s1=3, s2=4, state=A) %
Bak(bf=None, s1=4, s2=5, state=A) %
Bak(bf=None, s1=5, s2=2, state=A) %
CytoC(bf=1, state=M)
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s63
Bak(bf=1, s1=2, s2=3, state=A) %
Bak(bf=None, s1=3, s2=4, state=A) %
Bak(bf=None, s1=4, s2=5, state=A) %
Bak(bf=None, s1=5, s2=2, state=A) %
Smac(bf=1, state=M)
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s64
CytoC(bf=None, state=C)

CytoC

bf

state=C

s65
Smac(bf=None, state=C)

S m a c

bf

state=C

s66
Smac(bf=None, state=A)

S m a c

bf

state=A

s67
CytoC(bf=None, state=A)

CytoC

bf

state=A

s68
Apaf(bf=1, state=I) %
CytoC(bf=1, state=A)

Apaf

bf

state=I

Cy toC

bf

state=A

1

s69
Smac(bf=1, state=A) %
XIAP(bf=1)

S m a c

bf

state=A

XIAP

bf1

s70
Apaf(bf=None, state=A)

Apaf

bf

state=A

s71
Apop(bf=None)
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bf

s72
Apop(bf=1) %
C3(bf=1, state=pro)
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bf

C 3
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state=pro

1

s73
Apop(bf=1) %
XIAP(bf=1)

Apop

bf

XIAP

bf1

Output from the PySB render species tool run against EARM 2.0-M1a (Lopez Embedded). Each large
box represents one species, with its number and PySB representation at the top, followed by a depiction of
the monomer graph. In the monomer graph, each segmented box represents a monomer, with its name in
the first green segment and its sites in the following segments. Edges between monomer sites represent
bonds, and their numeric labels correspond directly to the bond numbering in the PySB representation
above.
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Figure S3

Model

name : string
base : Model
_export : boolean
monomers : ComponentSet
compartments : ComponentSet
parameters : ComponentSet
rules : ComponentSet
observables : ComponentSet
species : list
odes : list
reactions : list
reactions_bidirectional : list
initial_conditions : list
annotations : list

Monomer

sites : list
site_states : dict

Rule

reactant_pattern : ReactionPattern
product_pattern : ReactionPattern
is_reversible : boolean
rate_forward : Parameter
rate_reverse : Parameter
delete_molecules : boolean
move_connected : boolean

Parameter

value : number

Observable

reaction_pattern : ReactionPattern
species : list
coefficients : list

Compartment

parent : Compartment
dimension : number
size : Parameter

Component

name : string
model : Model
_export : boolean

ReactionPattern

complex_patterns : list of ComplexPatterns

ComplexPattern

monomer_patterns : list of MonomerPatterns

MonomerPattern

monomer : Monomer
site_conditions : dict
compartment : Compartment

ComponentSet

_elements : list
_map : dict
_index_map : dict

RuleExpression

reactant_pattern : ReactionPattern
product_pattern : ReactionPattern
is_reversible : boolean

"is a" (inheritance)

composition (has one or more, life-cycle dependence)

aggregation (has one or more, no life-cycle dependence)

Annotation

subject : object
object : string
predicate : string

Rule expression elements

Model components

UML class diagram for core PySB classes. Note that for clarity, only fields are shown (not methods). Model objects are built up using
collections of Rule, Parameter, Compartment, Observable, and Monomer objects, which acquire generic functionality (such as a name field)
from the superclass Component. Components are aggregated in the collection class ComponentSet. Rules are expressed as instances of the class
RuleExpression, which are built up using instances of the classes ReactionPattern, ComplexPattern, and MonomerPattern. The resulting
RuleExpression is stored in a Rule object, along with the associated rate parameters (as Parameter objects). Additional information about
model elements (including Components or macros) can be stored in an Annotation object. The list of Annotations is stored in the Model.
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