

Supporting Information

Figure S1. Quantification of multimers formed by GPC as function of pH. The monomer fraction was defined as the value of [1 - multimer fraction]. (a) Fraction of multimer formed after 24 h. (b) Time-dependence of multimer formation at a 1:1 Fe³⁺:catechol ratio (legend same as in (a)).

1

Figure S2. UV-visible spectra of solutions of Fe^{3+} and mPEG-cat. Spectra of Fe^{3+} and mPEG-cat in buffers of various pH (top). Spectra of Fe^{3+} and mPEG-cat incubated at pH 3 for 2 h before adjustment to pH 7 or 9 (bottom).

Figure S3. Rheometry of gels composed of 8cPEGa in unbuffered water. Gel formation with Fe^{3+} :catechol of 2:3 (red) was studied as a function of time (top), frequency (middle) and strain (bottom); as shown in the time sweep, Fe^{3+} :catechol of 1:3 (black) does not produce a gel. *G'*: solid line with circles; *G''*: dashed line with triangles (bottom).

Figure S4. Time and strain sweep experiments of gels formed at pH 3 composed of 8cPEGa with Fe³⁺:catechol of 1:3 (black), 2:3 (red), and 3:3 (blue). Gel formation was studied as a function of time (top) and, for gels with Fe³⁺:catechol of 2:3 and 3:3, of strain (bottom) for gels with Fe³⁺:catechol of 2:3 and 3:3. G': solid line with circles; G'': dashed line with triangles.

Figure S5. Digital images depicting the stability of hydrogels in water and aqueous EDTA.

Gels were formed at the indicated pH values and Fe³⁺:catechol stoichiometries

5

Figure S6. pH-dependent relaxation of two-step hydrogels containing covalent and coordination bonds. These samples were strained to 5 % (top), 10 % (middle), or 20 % (bottom) compression, and the stress was monitored for 100 s.

Table S1. Measured pH of reaction between Fe^{3+} and mPEG-cat

Fe ³⁺ :mPEG-cat	pH 3	pH 5	pH 7	pH 9
1:3	3.0	5.1	6.6	8.6
2:3	2.7	4.8	6.3	8.2
3:3	2.5	4.7	6.1	8.0

Table S2. Gel times associated with one-step cross-linking of 8cPEGa by Fe^{3+}

Fe ³⁺ :catechol	Water	рН 3	pH 5	pH 7	pH 9
1:3	NA	NA	NA	immediate	immediate
2:3	50 s	85 s	NA	immediate	immediate
3:3	20 s	45 s	NA	immediate	immediate

Gel formation assessed by vial inversion method. NA = no gel formed within 60 minutes.

Table 55. Stability of Fe -8CPECia gets incubated in water of EDTA solution after 24 f	Table S3.	Stability	of Fe ³⁺ -8cPEGa	a gels incubated	in water or EI	OTA solution	after 24 h
---	-----------	-----------	-----------------------------	------------------	----------------	--------------	------------

Solvent	Fe ³⁺ :catechol	рН 3	рН 5	pH 7	рН 9
	1:3	NA*	Unstable	Mostly Stable	Unstable
Water	2:3	Stable	Mostly Unstable	Mostly Stable	Unstable
	3:3	Stable	Mostly Stable	Stable	Mostly Unstable
100 mM EDTA	1:3	NA	Unstable	Mostly Unstable	Unstable
in Water	2:3	Stable	Unstable	Mostly Unstable	Unstable
in water	3:3	Stable	Unstable	Mostly Unstable	Unstable

1.5 h allowed for gel formation. *NA: gel does not form within 20 minutes

Table S4. Physical Characterization of Two-Step Hybrid Gels After Equilibration

		рН 3	рН 5	pH 7	pH 9
Color		yellow-brown	black	black	black
Swelling (%)		159.8 ± 3.8	108.7 ± 6.7 98.3 ± 1.3		88.8 ± 8.3
Initial Modulus (kPa) ^a		8.7 ± 5.6	18.8 ± 4.6	47.8 ± 6.9	39.5 ± 2.8
Initial Modulus (kPa) ^b	5 % strain	15.8 ± 4.7	25.8 ± 3.6	24.4 ± 3.8	55.4 ± 9.4
	10 % strain	18.7 ± 3.9	33.0 ± 2.5	38.8 ± 4.5	60.4 ± 9.2
	20 % strain	21.2 ± 4.0	37.5 ± 2.2	55.3 ± 3.9	66.6 ± 9.7
Steady State Modulus (kPa) ^c	5 % strain	15.4 ± 4.4	18.7 ± 2.1	12.2 ± 2.7	22.7 ± 3.6
	10 % strain	17.3 ± 3.8	24.6 ± 1.8	19.2 ± 2.4	25.6 ± 4.7
	20 % strain	19.2 ± 3.9	31.0 ± 1.3	31.6 ± 2.0	30.6 ± 4.6
Relaxation (%) ^d	5 % strain	^f	$13.6 \pm 1.1^{\text{g}}$	$35.9 \pm 1.2^{\text{g}}$	55.3 ± 0.7 ^g
	10 % strain	^f	13.3 ± 0.9	35.5 ± 1.6	56.1 ± 1.4
	20 % strain	^f	9.7 ± 0.8	32.3 ± 1.2	51.2 ± 0.6
Relaxation Time, τ (s) ^e	5 % strain	^f	$218\pm56^{\rm g}$	58.4 ± 40.4 ^g	$4.9\pm0.3^{\rm ~g}$
	10 % strain	^f	12 ± 1	37.4 ± 6.9	4.5 ± 0.2
	20 % strain	^f	25 ± 16	18.4 ± 0.4	4.9 ± 0.2
α^{e}	5 % strain	^f	$0.3 \pm 0.02^{\text{g}}$	$0.30 \pm 0.04^{\text{ g}}$	$0.62 \pm 0.03^{\text{g}}$
	10 % strain	^f	0.4 ± 0.05	0.35 ± 0.01	0.64 ± 0.003
	20 % strain	^f	0.38 ± 0.02	0.39 ± 0.02	0.67 ± 0.004

^a initial modulus calculated from slope of linear portion of stress-strain curves (from compression loops) with cross-head speed of 10 mm/min; ^b initial modulus calculated from slope of linear portion of stress-strain curves (from relaxation tests) with cross-head speed of 40 mm/min; ^c steady-state modulus (A_I/ϵ_{100}) calculated from fit of relaxation tests; ^d percent stress relaxed after 100 s; ^e calculated from fit of relaxation tests by expanded exponential model; ^f relaxation data were not calculated for materials equilibrated to pH 3 because of the absence of coordination bonds; ^g larger error for calculations associated with 5 % strain were due to the significance of instrumental drift.