WEB APPENDIX

Distribution of Lognormal Biomarkers with Error

Let $X \sim logNormal$, implying that $log(X) \sim N(\mu_X, \sigma_X^2)$. The mean and variance of X in terms are μ_X and σ_X^2 are $E[X] = e^{\mu_X + 0.5\sigma^2 x}$ and $Var[X] = (e^{\sigma^2 x} - 1)e^{2\mu_X + \sigma_X^2}$, respectivley.

Suppose $X^* = X + \varepsilon$, where $\varepsilon \sim N(0, \sigma_{\varepsilon}^2)$ is the measurement error and is independent of *X*. The distribution of X^* is the convolution of a lognormal and normal random variables without a closed form but with the following mean and variance

$$E[X^*] = E[X] + E[\varepsilon]$$
$$= e^{\mu_X + 0.5} + \sigma_X^2$$

and

$$Var[X^*] = Var[X] + Var[\varepsilon]$$
$$= (e^{\sigma^2 x} - 1)e^{2\mu_X + \sigma_X^2} + \sigma_{\varepsilon}^2$$

, respectively.

Assuming the availability of the mean and variance from the measurements X^* and the measurement error ε , we can solve for the parameters of interest μ_X and ${\sigma_X}^2$. Let R be the ratio or proportion of total variability attributable to the actual biomarker

$$R = \frac{\operatorname{Var}[X]}{\operatorname{Var}[X^*]} = \frac{\operatorname{Var}[X]}{\operatorname{Var}[X] + \operatorname{Var}[\varepsilon]}$$

then,

$$\operatorname{Var}[X] = \operatorname{Var}[X^*] - \sigma_{\varepsilon}^2$$
$$(e^{\sigma_X^2} - 1)e^{2\mu_X + \sigma_X^2} = \operatorname{Var}[X^*] - \sigma_{\varepsilon}^2$$
$$(e^{\sigma_X^2} - 1)\operatorname{E}[X^*]^2 = \operatorname{Var}[X^*] - \sigma_{\varepsilon}^2$$
$$\sigma_X^2 = \log\left[\frac{(\operatorname{Var}[X^*] - \sigma_{\varepsilon}^2)}{\operatorname{E}[X^*]^2} + 1\right]$$
$$\sigma_X^2 = \log\left[\frac{(R \cdot \operatorname{Var}[X^*])}{\operatorname{E}[X^*]^2} + 1\right]$$

and

$$E[X^*] = E[X]$$

$$E[X^*] = e^{\mu_X + 0.5\sigma_X^2}$$

$$\mu_X = log[E[X^*]] - 0.5\sigma_X^2$$

Specifically the cadmium and lead exposures here reasonably follow lognormal distributions and can be characterized by component wise exponentiation multivariate normal distribution,

$$\vec{U} \sim N\left(\vec{\mu}_{U} = \begin{pmatrix} \mu_{logcd} \\ \mu_{logpb} \end{pmatrix}, \Sigma_{U} = \begin{bmatrix} \sigma_{logcd}^{2} & \rho_{x}\sigma_{logcd}\sigma_{logpb} \\ \rho_{x}\sigma_{logcd}\sigma_{logpb} & \sigma_{logpb}^{2} \end{bmatrix}\right).$$

Parameter values in our simulations were chosen based on observed levels in the BioCycle Study with consideration to varying levels of measurement error, $\mu_{logcd} = \log(0.34) - 0.5 \times \sigma_{logcd}^2$, $\sigma_{logcd}^2 = \log\left(R \times \frac{0.05}{0.34^2} + 1\right)$ and $\mu_{logpb} = \log(1.02) - 0.5 \times \sigma_{logpb}^2$, $\sigma_{logpb}^2 = \log\left(R \times \frac{0.40}{1.02^2} + 1\right)$. Next, we constructed cadmium and lead exposures measured with mean 0 and multivariate normally distributed error, such that $\vec{X}^* = \vec{X} + \vec{\varepsilon}$, where $\vec{\varepsilon} \sim N\left(\vec{\mu}_{\varepsilon} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \Sigma_{\varepsilon} = \begin{bmatrix} \sigma_{\varepsilon c d}^2 & \rho_{\varepsilon} \sigma_{\varepsilon c d} \sigma_{\varepsilon p b} \\ \rho_{\varepsilon} \sigma_{\varepsilon c d} \sigma_{\varepsilon p b} & \sigma_{\varepsilon p b}^2 \end{bmatrix}\right)$,

 $\sigma_{\varepsilon cd}^2 = (1 - R) * 0.05$ and $\sigma_{\varepsilon pb}^2 = (1 - R) * 0.40$. This method was used for all the scenarios of correlations and *R*.

Web Figure 1. Directed acyclic graph of the association between cadmium (X₁), lead (X₂), measured cadmium (X₁^{*}), measured lead (X₂^{*}), true correlation between biomarkers (U₁= ρ_x), error correlation (U₂= ρ_ε) and anovulation (Y).

Since

$$\beta = cov(X^*)^{-1}cov(X^*, Y)$$
$$cov(X_1^*, Y) = cov(X_1 + \varepsilon_1, Y) = cov(X_1, Y) = a$$
$$cov(X_2^*, Y) = cov(X_2 + \varepsilon_2, Y) = cov(X_2, Y) = b,$$

we have $\beta = cov(X^*)^{-1} \binom{a}{b}$.

Since

$$\beta_{true} = cov(X)^{-1}cov(X,Y)$$
$$cov(X) = cov(X^* - \varepsilon) = cov(X^*) + cov(\varepsilon),$$

we have $\beta_{true} = [cov(X^*) + cov(\varepsilon)]^{-1} {a \choose b}$.

$$Bias = \beta - \beta_{true}$$

$$= \left[\left(cov(X) + cov(\varepsilon) \right)^{-1} - \left(cov(X) \right)^{-1} \right] cov(X,Y)$$

$$= \left\{ \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}^{-1} - \begin{pmatrix} \sigma_1^2 + \sigma_{\varepsilon_1}^2 & \rho \sigma_1 \sigma_2 + \rho_{\varepsilon} \sigma_{\varepsilon_1} \sigma_{\varepsilon_2} \\ \rho \sigma_1 \sigma_2 + \rho_{\varepsilon} \sigma_{\varepsilon_1} \sigma_{\varepsilon_2} & \sigma_2^2 + \sigma_{\varepsilon_2}^2 \end{pmatrix}^{-1} \right\} \begin{pmatrix} a \\ b \end{pmatrix}.$$

Web Figure 2. Levels of bias for main effects models for closed form solution under varying levels of correlation between biomarkers (ρ_x) and error correlation (ρ_{ε}) for the association between two continuous exposure biomarkers and continuous outcome under high levels of measurement error (R=0.50) for main effects of OR=0.75 (circle), 1.00 (triangle), 1.25 (+), 1.75 (x). Level of ρ_x varies along the top panel. Points between -0.6 and 0.6 are noted within each figure and refer to levels of ρ_{ε} . Web Table 1. Relative percent bias (mean squared error) for main effects models of the association between cadmium (Cd), lead (Pb) and anovulation, with moderate levels of measurement error (R=0.80) for OR 0.75 and OR 1.75 for n=200, for varying levels of correlation between biomarkers and error correlation

	ρε -	-0.6	$ ho_{arepsilon}$	0.0	ρ_{ε} 0.6		
	Cd	Pb	Cd	Pb	Cd	Pb	
OR = 0.75							
$\rho_x = -0.6$	-16.17 (0.60)	-16.23 (0.08)	-47.76 (0.53)	-26.35 (0.07)	-79.34 (0.58)	-31.52 (0.08)	
$\rho_x = -0.2$	10.04 (0.47)	-11.77 (0.06)	-23.14 (0.46)	-19.46 (0.06)	-55.64 (0.47)	-21.90 (0.07)	
$\rho_x 0.0$	11.80 (0.45)	-11.00 (0.06)	-6.87 (0.45)	-17.44 (0.07)	-46.23 (0.49)	-17.87 (0.06)	
$\rho_x 0.2$	16.85 (0.45)	-12.48 (0.06)	-12.73 (0.44)	-16.38 (0.06)	43.29 (0.50)	-13.60 (0.07)	
$\rho_x 0.6$	43.12 (0.52)	-14.60 (0.07)	13.68 (0.59)	-20.39 (0.08)	-18.99 (0.67)	-18.28 (0.09)	
OR = 1.75							
$\rho_x = -0.6$	-10.33 (0.60)	-18.56 (0.11)	-43.36 (0.65)	-26.42 (0.11)	-73.42 (0.77)	-31.55 (0.13)	
$\rho_x = -0.2$	8.19 (0.49)	-14.41 (0.08)	-23.83 (0.50)	-22.28 (0.10)	-48.19 (0.59)	-24.28 (0.10)	
$\rho_x 0.0$	13.34 (0.49)	-14.69 (0.08)	-15.30 (0.46)	-19.28 (0.09)	-43.83 (0.57)	-23.72 (0.10)	
$\rho_x 0.2$	17.84 (0.48)	-14.13 (0.08)	-16.18 (0.48)	-19.84 (0.08)	-36.53 (0.56)	-19.81 (0.09)	
$\rho_x 0.6$	39.67 (0.61)	-19.68 (0.09)	6.39 (0.60)	-20.55 (0.10)	-19.57 (0.74)	-23.14 (0.13)	

Web Table 2. Relative percent bias (mean squared error) for models of an interaction (CdxPb) between cadmium (Cd), lead (Pb) and anovulation, with moderate levels of measurement error (R = 0.80) for OR 0.75 and OR 1.75 for n = 200, for varying levels of correlation between biomarkers and error correlation

	$\rho_{\epsilon} = 0.6$			ρ_{ε} 0.0			ρ_{ε} 0.6		
	Cd	Pb	CdxPb	Cd	Pb	CdxPb	Cd	Pb	CdxPb
OR = 0.75									
$\rho_x = -0.6$	58.05 (1.52)	7.46 (0.18)	-81.71 (1.94)	47.21 (1.65)	5.28 (0.19)	-119.88(2.29)	-43.29 (1.72)	8.22 (0.20)	-152.28(2.66)
$\rho_x = -0.2$	50.30 (1.82)	3.47 (0.21)	-42.98 (1.68)	23.28 (1.87)	-2.58 (0.22)	-57.37 (1.76)	-0.70 (1.94)	-7.28 (0.23)	-71.89 (1.92)
$\rho_x 0.0$	42.63 (1.98)	-1.83 (0.23)	-25.75 (1.61)	2.64 (2.06)	-10.12 (0.23)	-35.83 (1.68)	-32.77 (2.06)	-18.43 (0.24)	-35.66 (1.65)
$\rho_x 0.2$	35.25 (2.22)	-8.95 (0.26)	-7.33 (1.64)	-17.87 (2.21)	-21.37 (0.26)	-5.71 (1.65)	-70.03 (2.21)	-32.51 (0.27)	2.74 (1.56)
$\rho_x 0.6$	-26.24 (2.58)	-38.71 (0.32)	41.83 (1.64)	-81.61 (2.50)	-52.57 (0.33)	-49.92 (1.53)	-139.49 (2.71)	-58.00 (0.33)	56.44 (1.46)
OR = 1.75									
$\rho_x = -0.6$	51.96 (1.72)	5.21 (0.20)	-84.04 (2.80)	35.65 (1.78)	1.99 (0.21)	-118.26 (3.89)	23.62 (1.82)	1.26 (0.23)	-141.12 (4.83)
$\rho_x = -0.2$	68.08 (2.28)	6.15 (0.24)	-56.50 (2.32)	33.79 (2.11)	-1.83 (0.25)	-70.09 (2.63)	10.77 (2.04)	-4.14 (0.26)	84.31 (2.91)
$\rho_x 0.0$	56.26 (2.43)	-0.60 (0.26)	-37.73 (2.17)	16.45 (2.24)	-10.00 (0.27)	-46.58 (2.22)	-17.29 (2.13)	-15.36 (0.28)	53.18 (2.21)
$\rho_x 0.2$	49.05 (2.61)	-5.22 (0.30)	-23.63 (2.10)	-4.21 (2.28)	-18.51 (0.30)	-22.97 (1.96)	-44.51(2.44)	-26.75 (0.32)	22.96 (1.90)
$\rho_x 0.6$	17.94 (3.01)	-27.14 (0.39)	12.34 (2.25)	-56.11 (3.17)	-44.03 (0.47)	29.24 (2.31)	-107.94 (3.58)	-51.53 (0.50)	33.50 (2.11)