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1. Models considering additional species with phosphatase activity. 

 
In the basic model describing a split kinase system we have assumed that only free CheA3 
has phosphatase activity towards the phosphorylated response regulator CheY6. Here, 
we relax this assumption by considering additional molecular species with phosphatase 
activity. We create two  alternative  models  where  we  separately  consider  the  ability  of  
phosphorylated  and complexed CheA3 to act as a phosphatase.  These models contain one 
and two additional reactions respectively, in addition to those reactions considered in the 
basic model. Below, we list these additional reactions and the resulting ordinary differential 
equations (ODEs) for each model. Model parameters are given in Table S1 and are mostly 
derived from the basic model parameters. The effect of having these additional phosphatases 
on signal-response relationship is shown in Figure S4. 

 

1.1. Model with CheA3-CheA4 and CheA3-CheA4-ATP complexes as 

phosphatases: 

 

Additional reactions; 
 
 

 

 

 

 

which, combined with the original reactions listed in the main text, results in the following 

new set of ODEs; 

 
d[A3p]

dt
 k5 [A3A4ATP] k7 [A3] [Y 6p] k6 [A3p] [Y 6]

d[A3A4]

dt
 k1 [A3] [A4] k4 [A3A4ATP] [A3A4Y 6p]  (k13  k14 )  [A3A4]  k2  k3 [ATP] k12 [Y 6p] 

d[A3A4ATP]

dt
 k3 [A3A4] [ATP] [A3A4ATP]  (k16  k17 )  [A3A4ATP]  k4  k5  k15 [Y 6p] 

d[A3Y 6p]

dt
 k9 [A3] [Y 6p] [A3Y 6p]  k10  k11 

d[A3A4Y 6p]

dt
 k12 [Y 6p] [A3A4] [A3A4Y 6p]  (k13  k14 )

d[A3A4ATPY 6p]

dt
 k15 [Y 6p] [A3A4ATP] [A3A4ATPY 6p]  (k16  k17 )

d[Y 6p]

dt
 k10 [A3Y 6p] k6 [A3p] [Y 6] k13 [A3A4Y 6p] k16 [A3A4ATPY 6p]

[Y 6p]  k7 [A3] k8  k9 [A3] k12 [A3A4] k15 [A3A4ATP] 
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1.2. Model with CheA3p as phosphatase: 

 

Additional reactions; 
 

 
 

 

 

which, combined with the original reactions listed in the main text, result in the following 

new set of ODEs; 
 

 

d[A3p]

dt
 k5 [A3A4ATP] k7 [A3] [Y 6p] [A3pY 6p]  (k19  k20 ) k6 [A3p] [Y 6] k18 [A3p] [Y 6p]

d[A3A4]

dt
 k1 [A3] [A4] k4 [A3A4ATP] [A3A4]  k2  k3 [ATP] 

d[A3A4ATP]

dt
 k3 [A3A4] [ATP] [A3A4ATP]  k4  k5 

d[A3Y 6p]

dt
 k9 [A3] [Y 6p] [A3Y 6p]  k10  k11 

d[A3pY 6p]

dt
 k18 [A3p] [Y 6p] [A3pY 6p]  k19  k20 

d[Y 6p]

dt
 k10 [A3Y 6p] k6 [A3p] [Y 6] k19 [A3pY 6p] [Y 6p]  k7 [A3] k8  k9 [A3] k18 [A3p] 

 

 

 

2. Model with an alternative reaction scheme. 

 

In the basic model describing a split kinase system and discussed in the main text, we have 

assumed that the phosphorylation of the CheA3 by CheA4 results in the dissociation of the 

CheA3:CheA4 complex. Here, we relaxed this assumption to create an alternative model. In this 

model, we allowed for the possibility that phosphorylated CheA3 remains in complex with CheA4 

and that this CheA3p:CheA4 complex is also capable of acting as phosphatase towards CheY6p 

(corresponding reaction rates k’5, k’6 and k’’6). We find that having these reactions in the model 

does not affect the level of ultrasensitivity but can lead to loss of bistability (Figure S6). Note, that 

besides these reactions, this alternative model is the same as the basic model and only considers 

phosphatase activity by free CheA3. Model parameters are given in Table S2 and are mostly 

derived from the basic model parameters. As in the basic model (Figure 2D and S4), considering 

alternative phosphatases in this alternative model significantly reduces ultrasensitivity and leads to 

loss of bistability (data not shown). 
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This alternative model contains the following reactions; 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

resulting in the following set of ODEs; 

 

1 2 4 3

6 7

3 4 5 5

5 7 6

[ 3 4]
[ 3] [ 4] [ 3 4] [ 3 4 ] [ 3 4] [ ]

[ 3 4] [ 6] ' [ 3 4] [ 6 ] '

[ 3 4 ]
[ 3 4] [ ] [ 3 4 ] ( ' )

[ 3 ]
[ 3 4 ] [ 6 ] [ 3] [ 3 ] ([ 6] [ 4]

d A A
A A k A A k A A ATP k A A ATP k

dt

A pA Y k A A Y p k

d A A ATP
A A ATP k A A ATP k k k

dt

d A p
A A ATP k Y p A k A p Y k A

dt

         

     

      

         1

2

1 2 6 6 5
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[ 3 6 ]
[ 3] [ 6 ] [ 3 6 ] ( )

[ 6 ]
[ 3 ] [ 6] [ 6 ] [

k

A pA k

d A pA
A p A k A pA k Y k Y k A A ATP k

dt

A A Y p k A A Y p k

d A Y p
A Y p k A Y p k k

dt

d Y p
A p Y k Y p A

dt


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k A A Y p k A pA Y k Y k

A A Y p k A Y p k A Y p k Y p k

        

          

 

 

3. Model with additional kinase, CheA2 

 

In the basic model describing a split kinase system we have only considered 

phosphorylation of the response regulator (i.e. CheY6) by the split kinase. In vivo, cross-talk 

from other kinases could also result in the phosphorylation of the response regulator. For 

example, in Rhodobacter sphaeroides, another kinase, CheA2 is known to phosphorylate 

CheY6 [27]. Here, we determine the effect of having such an additional kinase on the 

response dynamics generated by the split kinase. We created a model having this additional 
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kinase activity and analysed the signal-response relationship in the system under a range of 

phosphotransfer rates from such an additional kinase (Figure S7). Model parameters are 

given in Table S3 and are mostly derived from the basic model parameters. This model 

contains two additional reactions: 
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which, combined with the original reactions listed in the main text, results in the 

following new set of ODEs; 

 

1 2 4 3

3 4 5

5 7 6

5 7 6

3 4

[ 3 4]
3 4 3 4 3 4 3 4

[ 3 4 ]
3 4 3 4 ( )

[ 3 ]
3 4 6 3 3 6

[ 2 ]
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d A A
A A k A A k A A ATP k A A ATP k

dt

d A A ATP
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dt
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dt
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dt

d A ATP
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dt
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d A Y p
Y p A k A Y p k k

dt

d Y p
A p Y k Y p A k A Y p k Y p A k

dt

A p Y k Y p A k Y p k



     

          

       

 

 

 

4. Analytical solutions for simplified systems with a bifunctional, split kinase vs. 

split kinase with a stand-alone phosphatase. 

 
Besides using the chemical reaction network theory to analse different models (see 
discussion in the main text), we have also derived analytical solutions for a simplified 

reaction scheme for a bifunctional split kinase and also for a monofunctional split kinase 
with a stand-alone phosphatase (i.e. where dephosphorylation of the response regulator is 
mediated by a separate phosphatase). 

 

 

4.1. Simplified reaction scheme and analytical solution for a system with 

bifunctional, split kinase. 

 

In  this  simplified  scheme,  we  assume  that  all  phosphotransfer  and  

dephosphorylation reactions occur  very fast and that complex formation can be 

ignored. The reaction scheme we consider is; 
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which results in the following ODEs;  

 

1 2 5

5 6

6 9 8

[ 3 4]
[ 3] [ 4] [ 3 4] ( )

[ 3 ]
[ 3 4] [ 3 ] [ 6]

[ 6 ]
[ 3 ] [ 6] [ 6 ] [ 3] [ 6 ]

d A A
A A k A A k k

dt

d A p
A A k A p Y k

dt

d Y p
A p Y k Y p A k Y p k

dt

     

    

       

  

 

 

We first define the conservation relations in the system: 

 
[A3]tot  [A3] [A3p] [A3A4]

[A4]tot  [A4] [A3A4]

[Y 6]tot  [Y 6] [Y 6p]

   

 

At steady state, all of the above ODEs would be equal to zero, allowing us to derive the steady 

state expression for phosphorylated CheY6. Following simple algebra, we arrive at a quartic 

equation; 

  

 

                    (1) 

                            (2) 
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Solving equation 2 and 3, we get 
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From equation 1, 
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                                (6) 

             

Putting value of A3p and A3A4 from eq 4&5 into 6, we get 
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Putting back the value of N and solving it we get, 
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5 6 6 9 6 8

2
5 6 9

4 6

2 6 6 6

2 6 3 6 6 6 )

6 (2 6 2 6

ot tot

tot tot tot

tot tot tot tot tot

tot to

k k k b Y k k k b

k k k b k k c Y k k c k k c Y k k d Y k k d

Y k k d A Y k k e Y k k e Y f

Y p Y k k k b Y

         

                      

               

         2 2 2

2 2

2
5 6 5 6 9 5 6 5 6

2
5 6

2 6 6 6 )

6 0

t tot tot tot

tot

k k b Y k k k b Y k k c Y k k d

Y k k b

                

    

 

The emergence of the quartic expression for the steady state level of phosphorylated CheY6 

indicates the potential of this system to reach bistability and high level of nonlinearity even 

without considering complex formation. To confirm bistability, we have analysed the model 

shown above and a similar one (see Supplementary Text S2) using chemical reaction network 

theory. This confirmed the potential of bistability in both of these models (see also discussion in 

the main text). Furthermore, we have analysed the above simplified model by evaluating the 

analytical solution over the same signal range as for the basic model. For reactions that were 

modeled as bi- or uni-molecular both in the basic model and this simplified model, we have used 

the parameters as in the basic model. For reactions that were modeled via complex formation in 

the basic model (e.g. the A3p mediated dephosphorylation of Y6p), we have explored different 

parameter values. In line with the results of the chemical reaction network theory, this analysis 
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confirmed that the modeled system displays bistability (i.e. multiple permissible steady states) in 

a biologically permissible parameter regime.

 

 

4.2. Simplified reaction scheme and analytical solution for a system with a monofunctional, 

split kinase and stand-alone phosphatase.  

 

As before, we assume that all phosphotransfer and dephosphorylation reactions occur very fast 

and ignore the formation of complexes. The reaction scheme we consider is; 

 
1

2

5

6

9

8

3 4 3 4

3 4 3 4

3 6 3 6

6 6

6 6

k

k

k

k

k
i

k
i

A A A A

A A ATP A p A ADP

A p Y A Y p

Y p X Y X P

Y p Y P

 

   

  

   

   

 

We first define the conservation relations in the system: 

 
[ 3] [ 3] [ 3 ] [ 3 4]

[ 4] [ 4] [ 3 4]

[ 6] [ 6 ] [ 6]

[ ] [ ]

tot

tot

tot

tot

A A A p A A

A A A A

Y Y p Y

X X

  

 

 



 

 

 

which results in the following ODEs;  

 

1 2 5

5 6

6 9 8

[ 3 4]
[ 3] [ 4] [ 3 4] ( )

[ 3 ]
[ 3 4] [ 3 ] [ 6]

[ 6 ]
[ 3 ] [ 6] [ 6 ] [ ] [ 6 ]

d A A
A A k A A k k

dt

d A p
A A k A p Y k

dt

d Y p
A p Y k Y p X k Y p k

dt

     

    

       
 

 

At steady state, all of the above ODEs would be equal to zero, allowing us to derive the steady 

state expression for phosphorylated CheY6. Following simple algebra, we arrive at a cubic 

equation;

 

 

                  (1) 

                         (2) 

6 9 83 6 6 6 0A p Y k Y p X k Y p k       

          

(3) 

Solving equation 2 and 3, we got 

1 2 53 4 3 4 ( ) 0A A k A A k k     

5 63 4 3 6 0A A k A p Y k    
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5

9 8

3 4
6

6 3 4

6
3 4

tot

A A k
Y p

X k k

Y p A A a

Y p
A A

a




 

 



 

Where a is given by; 
5

9 8tot

k
a

X k k


 
 

From equation 2,

 

6
3

6

Y p c
A p

Y


  

Where c is given by; 
5

6

k
c

k a



 

From equation 1, we get 

3 4 ( 3 3 3 4) ( 4 3 4)tot totA A b A A p A A A A A            (4) 

Putting A3A4 and A3p values in equation 4, we get 

3 2

2 2

2
)

6 6 6 ( 3 4 6 )

6 ( 6 4 3 4

6 4 3 6 3 6 4 0

tot tot tot tot

tot tot tot tot

tot tot tot tot tot tot tot

Y p Y Y p A a b a c a A a Y

Y p b a Y A c a A A a

Y A a A a Y A Y A a

            

         

         

 

Where b is given by;
2 5

1

( )k k
b

k


  

The emergence of the cubic expression for the steady state level of phosphorylated CheY6 

indicates less nonlinearity in the system compared with the system with a bifunctional split 

kinase (previous section). A numerical analysis using this analytical expression (as done in the 

previous section), shows that in the similar parameter ranges where the previous model shows 

bistability, this one does not. Again, this is inline and as expected from the results of the 

chemical reaction network theory, which shows no possibility of bistability in this model (see 

main text and Supplementary Text S3). 
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5. Mathematical model of the phosphotransfer experiments 
 

We developed a mathematical model of the specific in vitro experimental setup used to test 

whether CheA4 can inhibit the phosphatase activity of CheA3. In particular, these experiments 

employed a truncated form of CheA3, CheA3P1, that lacks phosphatase activity and that can be 

isolated in a fully phosphorylated form (7). We mixed CheA3P1-P with CheY6 in the absence of 

ATP and monitored phosphotransfer to CheY6 and its subsequent dephosphorylation by CheA3. 

In the model, CheA3P1-P was assumed to have the same phosphotransfer kinetics as CheA3. 

We also assumed that CheA3P1 and CheA3P1-P can bind to CheA4 at the same rate as CheA3. 

The resulting set of reactions in the system are; 

 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 giving rise to the following ODEs;

1

2

1

2

1

2

6

7

6

7

8

9
11

10

12
14

13

'

'

''

''

`

`

3 4 3 4

1 4 4 1

1 4 4 1

3 6 3 6

4 1 6 4 1 6

6 6

3 6 3 6 3 6

3 4 6 3 4 6 3

k

k

k

k

k

k

k

k

k

k

k
i

k k
i

k

k k

k

A A A A

P A A P

P p A A P p

A p Y A Y p

A P p Y A P Y p

Y p Y P

A Y p A Y p A Y P

A A Y p A A Y p A A

 

 

 

 

 

 

   

  4 6 iY P 
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1 2 12 13 14

1 2 6 7

2 1 6 7

2 1

[ 3 4]
3 4 3 4 3 4 6 3 4 6 ( )

[ 4 1]
1 4 ' 4 1 ' 4 1 6 ` 4 1 6 `

[ 1]
4 1 ' 1 4 ' 1 6 1 6

[ 4 1 ]
4 1 '' 4 1 '' 4 1 6

d A A
A A k A A k A A Y p k A A Y p k k

dt

d A P
P A k A P k A P p Y k A P Y p k

dt

d P
A P k P A k P p Y k P Y p k

dt

d A P p
A P p k A P p k A P p Y

dt

          

          

          

        6 7

9 10 11

12 13 14

6 7 6 7 10 9

13 12

` 4 1 6 `

[ 3 6 ]
3 6 3 6 ( )

[ 3 4 6 ]
3 4 6 3 4 6 ( )

[ 6 ]
1 6 1 6 4 1 6 ` 4 1 6 ` 3 6 3 6

3 4 6 3 4 6 6

k A P Y p k

d A Y p
A Y p k A Y p k k

dt

d A A Y p
A A Y p k A A Y p k k

dt

d Y p
P p Y k P Y p k A P p Y k A P Y p k A Y p k A Y p k

dt

A A Y p k A A Y p k Y p k

  

     

     

                

       8

 

 

We  numerically  solved  this  system using parameter values given in Supplemental Table 4 

and  in  the  presence  of  different  levels  of  CheA4. By fitting a first-order exponential decay 

curve to this simulation data, we estimated the half-time of phosphorylated CheY6 (kobs) 

shown in Figure 4. Under the assumption that CheA4 and CheA3:CheA4 complex are not  

capable of CheY6-P dephosphorylation, this model predicts that increasing  CheA4  levels  

would  slow  the   CheY6-P  dephosphorylation  kinetics  by sequestering  free  CheA3. We 

found that this model provides a good qualitative match to the experimental observations 

(Figure 4 in the main text). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


