Positively selected sites in cetacean myoglobins contribute to protein Stability

Pouria Dasmeh^{1,2}, Adrian W.R Serohijos², Kasper P. Kepp^{1*}, Eugene I. Shakhnovich^{2*}

¹Technical University of Denmark, DTU Chemistry, DK 2800 Kongens Lyngby, Denmark. ² Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA 02139.

*Correspondence:

E.I.S. (shakhnovich@chemistry.harvard.edu)

K.P.K. (kpj@kemi.dtu.dk)

Table S1 Experimental and computed FoldX $\Delta\Delta G$ for a range of Mb mutations. The FoldX results (last two columns) are reported using two PDB structures: 1MBO and 1U7S.

Nr	Reference	Mutation	$\Delta\Delta G_{experimental}$ (unfolding)	pН	Т	FoldX+ Repaired+1MBO (kcal/mol) [1]	FoldX+ Repaired+1u7s (kcal/mol) [2]
1	[3]	WT ^a	0	6	25	0	0
2	[3]	I28A	2.06	6	25	0.74	1.08
3	[3]	L29A	0.39	6	25	2.69	2.81
4	[3]	I30A	1.9	6	25	1.6	2.32
5	[3]	L32A	2.04	6	25	2.91	2.81
6	[4]	A130L	2.3	7.5	0	4.29	2.11
7	[4]	A130K	3.7	7.5	0	2.55	4.43
8	[4]	F123T	3.5	7.5	0	4.11	4.75
9	[5]	H24V	0.52	7	0	0.14	-1.23
10	[5]	H36Q	1.3	7	0	0.54	0.91
11	[5]	H48Q	0.62	7	0	-0.29	-0.42
12	[5]	H64Q	0.45	7	0	-0.29	-0.52
13	[5]	H82Q	0.05	7	0	2.24	1.34
14	[5]	H93G	-0.04	7	0	2.07	2.12
15	[5]	H97Q	0.11	7	0	-0.23	-0.26
16	[5]	H113Q	0.26	7	0	0.14	-0.48
17	[5]	H119F	0.68	7	0	-0.25	-0.5

a: Experimental $\Delta\Delta G$ values for the mutants are calculated from $\Delta G(mutant)$ - $\Delta G(WT)$ where $\Delta G(WT)$ is the respective WT free energy of unfolding for each group.

Figure S1 $\Delta\Delta G$ values predicted by FoldX versus experimental $\Delta\Delta Gs$ (kcal/mol) for the validation set (pdb=1MBO).

Figure S2 $\Delta\Delta G$ values predicted by FoldX versus experimental $\Delta\Delta Gs$ (kcal/mol) for the validation set (pdb=1U7S).

Table S2 FoldX calculations for all mutations in the Cetacean clade using PDB

structure 1U7S. Mutations in the sites detected to be under positive selection are shown in grey.

Mutation	ΔΔG	Mutation	ΔΔG
V1G	-0.444	N66V	-1.074
G1V	0.444	N66H	-0.444
S3T	0.988	N66I	-1.696
D4E	0.010	G74A	-1.008
G5A	-0.722	E83D	0.282
Q8H	0.208	D83E	-0.282
N12H	0.240	V101I	-1.446
V13I	-0.550	E109D	0.426
G15A	-0.230	K118R	-0.670
A15G	0.230	R118K	0.670
V21I	-0.678	G121A	0.038
V21L	-1.224	G121S	-1.032
A22S	0.556	D122E	0.208
E27D	-1.518	G129A	-0.670
D27E	1.518	A129G	0.670
V28I	-1.098	S132N	-0.007
I28V	1.098	N132S	0.007
R31S	0.404	N132T	0.530
G35S	-0.142	N140K	-0.090
S35H	-0.636	M142I	0.212
K45R	-0.142	A144T	1.080
T51S	0.334	F151Y	0.962
E54D	-0.352	Q152H	0.504

Probability of stabilization being conditional on the positive selection can be calculated as:

$$\Pr(\Delta\Delta G < 0|\omega > 1) = \frac{\Pr(\omega > 1|\Delta\Delta G < 0)\Pr(\Delta\Delta G < 0)}{\Pr(\omega > 1)}$$
(S1)

Overall, there are 63 different mutations in the whale, 26 mutations with $\Delta\Delta G < 0$ and 17 mutations in the sites detected to be under positive selection with nine of them having $\Delta\Delta G < 0$ (see Figure 3 in the main text). Equation S1 thus gives:

$$\Pr(\Delta\Delta G < 0 | \omega > 1) = \frac{\left(\frac{9}{17}\right)\left(\frac{26}{63}\right)}{\left(\frac{17}{63}\right)} = 0.8090$$

Model	#Param	BIC	AICc	lnL	Invariant	Gamma
Davhoff+G	164	7024.6	5806.3	-2737	n/a	0.49985
Davhoff+G+I	165	7032.9	5807.1	-2736.4	0.136066	0.67094
JTT+G	164	7040.8	5822.4	-2745.1	n/a	0.47808
JTT+G+I	165	7049.4	5823.6	-2744.6	0.145221	0.6543
WAG+G	164	7074.9	5856.5	-2762.1	n/a	0.45491
WAG+G+I	165	7083.2	5857.4	-2761.5	0.127089	0.58426
rtREV+G	164	7106.2	5887.8	-2777.8	n/a	0.44271
rtREV+G+I	165	7113.5	5887.8	-2776.7	0.155407	0.60074
Davhoff+I	164	7163.5	5945.1	-2806.4	0.363738	n/a
ITT+I	164	7182.6	5964.2	-2816	0 374813	n/a
cpREV+G	164	71907	5972.4	-2820	n/a	0 38501
cpREV+G+I	165	7196.4	5970.6	-2818.1	0.209722	0.55634
ITT+G+F	183	7200.3	5841.3	-2735	n/a	0.48313
ITT+G+I+F	184	7208.6	5842.2	-2734.4	0 124288	0.61995
Davhoff+G+F	183	7219.2	5860.3	_2744 5	n/a	0.49825
Dayhoff+G+I+F	184	7227.6	5861.2	-2743.9	0 117732	0.49029
WAG+I	164	7232.1	6013.7	-2840.7	0.374551	n/a
rtREV_I	164	7269.4	6051	-2859 /	0.374902	n/a
rtREV+G+E	183	7207.4	5013	2770.8	n/a	0.44466
rtREV+G+I+E	18/	7270.2	5012.0	2760.7	0 1/078/	0.50206
WAG+G+F	183	7287.0	5028.0	2709.7	0.149704	0.39200
mtPEV24+C	164	7280.7	6071.3	2860.5	n/a	0.41432
WAG+G+L+E	104	7206.1	5020.7	-2809.3	0.120562	0.41432
wAU+U+I+F	164	7290.1	5929.7	-2110.2	0.120303	0.50954
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	103	7214.0	5056	-2000.5	0.140911	0.34439
$\operatorname{IIIIKE} \sqrt{24+G+F}$	100	7202.5	5057.2	-2792.5	II/a	0.45429
Devhoff	164	7325.5	61177	-2791.9	0.093035	0.5111
	103	7247 1	5099 1	-2095.7	II/a	n/a
	163	7261.5	6150.5	-2000.4	0.506742	11/a
JII Devihoff L E	103	7266.0	6007.0	-2910.1	11/a 0.259554	11/a
	163	7500.9	61547	-2010.5	0.338334	n/a
CPKEV + I	104	7402 5	6044.5	-2911.2	0.393134	11/a
CPREV+G+F	103	7405.5	6020.6	-2830.0	n/a	0.59089
CPKEV+G+I+F	164	7400	0039.0	-2855.1	0.200494	0.00489
	105	7408.5	6075	-2955.0	II/a	n/a
$\frac{\Pi KE V + I + F}{WAC + I + F}$	103	7450 6	60017	-2001.0	0.373138	n/a
WAG+I+F	163	7450.0	6091.7	-2800.2	0.309081	n/a
TIKE V	105	7405.5	0254.5	-2962	n/a	n/a
MIREV24+1	104	7490.3	0277.9	-2972.8	0.362499	n/a
	182	/508.4	0100.8	-2893.8	n/a	n/a
$\mathbf{M}\mathbf{K}\mathbf{E}\mathbf{V}24\mathbf{+1}\mathbf{+F}$	183	7509	6150.1	-2889.4	0.357606	n/a
DaynoII+F	182	1522	6170.5	-2900.6	n/a	n/a
CPREV	103	/546.3	6335.3	-3002.5	n/a	n/a
CPREV+I+F	183	/5/6./	6217.7	-2923.2	0.396104	n/a
WAG+F	182	7614.2	6262.6	-2946.7	n/a	n/a
TIKEV+F	182	7618.3	6266./	-2948.7	n/a	n/a
mtREV24+F	182	7675.5	6324	-2977.3	n/a	n/a
mtREV24	163	7723.3	6512.3	-3091	n/a	n/a
cpREV+F	182	7731.3	6379.7	-3005.2	n/a	n/a

Table S3 The best nucleotide and amino acid substitution models fitted to the data.

Model	#Param	BIC	AICc	lnL
Dayhoff+G	18	1772.3	1676.6	-820.08
Dayhoff+G+I	19	1779.5	1678.6	-820.04
JTT+G	18	1784.5	1688.9	-826.22
JTT+G+I	19	1791.9	1690.9	-826.22
WAG+G	18	1796.7	1701	-832.27
rtREV+G	18	1799.9	1704.2	-833.87
WAG+G+I	19	1803.7	1702.7	-832.12
rtREV+G+I	19	1806.4	1705.5	-833.49
Dayhoff	17	1821.8	1731.4	-848.5
Dayhoff+I	18	1829.1	1733.4	-848.5
cpREV+G	18	1832.9	1737.3	-850.41
cpREV+I	18	1837	1741.4	-852.47
cpREV+G+I	19	1838.4	1737.4	-849.47
JTT	17	1847.7	1757.4	-861.48
JTT+I	18	1855.1	1759.4	-861.48
WAG	17	1864.5	1774.1	-869.87
Dayhoff+G+F	37	1868	1672.3	-798.2
WAG+I	18	1871.8	1776.2	-869.87
JTT+G+F	37	1873.7	1678	-801.06
Dayhoff+G+I+F	38	1875.3	1674.4	-798.2
rtREV	17	1877.4	1787	-876.3
JTT+G+I+F	38	1881	1680.1	-801.06
rtREV+I	18	1884.7	1789.1	-876.3
mtREV24+G	18	1886.1	1790.5	-877.01
rtREV+G+F	37	1886.6	1690.9	-807.53
mtREV24+G+I	19	1890.8	1789.9	-875.7
rtREV+G+I+F	38	1893.7	1692.8	-807.42
mtREV24+G+F	37	1900.7	1705	-814.58
WAG+G+F	37	1901.7	1706	-815.05
mtREV24+G+I+F	38	1902.7	1701.7	-811.89
WAG+G+I+F	38	1908.9	1708	-815.02
cpREV	17	1915.8	1825.4	-895.5
Dayhoff+F	36	1925.3	1734.8	-830.54
cpREV+G+F	37	1925.6	1729.9	-827.02
Dayhoff+I+F	37	1932.6	1736.9	-830.54
cpREV+G+I+F	38	1932.9	1732	-827.02
JTT+F	36	1937.1	1746.7	-836.46
JTT+I+F	37	1944.5	1748.8	-836.45
WAG+F	36	1968.8	1778.4	-852.3
WAG+I+F	37	1976.2	1780.5	-852.3
rtREV+F	36	1978.4	1787.9	-857.08
mtREV24	17	1979.5	1889.1	-927.35
mtREV24+F	36	1980.5	1790.1	-858.16
rtREV+I+F	37	1985.7	1790	-857.08
mtREV24+I	18	1986.8	1891.1	-927.34
mtREV24+I+F	37	1987.9	1792.2	-858.16
cpREV+F	36	1996.9	1806.5	-866.34
cpREV+I+F	37	2004.3	1808.6	-866.34

Table S4 Results of amino acid substitution models for the whale clade.

Model	#Param	BIC	AICc	lnL	Invariant	Gamma	R
T92+G+I	21	2821.1	2686	-1321.9	0.581175	0.22705	1.4379
T92+G	20	2833.5	2704.8	-1332.3	n/a	0.09193	1.0517
K2+G+I	20	2834	2705.3	-1332.5	0.603384	0.2703	1.3252
HKY+G+I	23	2834.9	2686.9	-1320.3	0.578942	0.22564	1.4735
TN93+G+I	24	2839.4	2685	-1318.4	0.58886	0.22944	1.4997
K2+G	19	2839.6	2717.3	-1339.6	n/a	0.09298	0.9933
JC+G	18	2842.6	2726.7	-1345.3	n/a	0.09076	0.5
JC+I	18	2843.8	2727.9	-1345.9	0.788337	n/a	0.5
JC+G+I	19	2844.2	2721.9	-1341.9	0.596368	0.27056	0.5
HKY+G	22	2846.3	2704.7	-1330.3	n/a	0.09227	1.0712
HKY+I	22	2848.2	2706.6	-1331.2	0.791017	n/a	1.0625
TN93+G	23	2850.5	2702.5	-1328.1	n/a	0.10033	1.0612
GTR+G+I	27	2875.6	2701.9	-1323.8	0.613329	0.3932	1.1952
GTR+G	26	2875.8	2708.5	-1328.1	n/a	0.10037	1.0594
T92	19	2973.3	2851	-1406.4	n/a	n/a	0.916
K2	18	2974.2	2858.4	-1411.1	n/a	n/a	0.9147
JC	17	2977.7	2868.3	-1417.1	n/a	n/a	0.5
T92+I	20	2982.1	2853.4	-1406.6	0.00001	n/a	0.916
K2+I	19	2982.7	2860.4	-1411.1	0.00001	n/a	0.9147
HKY	21	2987.1	2851.9	-1404.9	n/a	n/a	0.9134
TN93	22	2992.5	2850.9	-1403.4	n/a	n/a	0.9175
TN93+I	23	2999.4	2851.5	-1402.6	0.00001	n/a	0.9173
GTR	25	3016	2855.2	-1402.5	n/a	n/a	0.9275
GTR+I	26	3022.9	2855.7	-1401.7	0.00001	n/a	0.9275

 Table S5 Results of nucleotide substitution models for the whale clade.

Table S6 Likelihood ratio tests for site models when branch lengths are estimated for each model rather than taking the ML-estimated branch lengths from the M0 model. LRT values are shown for M7 vs. M8 and M8 vs. M8fix.

Clades	Model	ln L	2 Δ Ι	P value	Positively selected sites (BEB: P(ω>1)>0.50)
Cetaceans	Site models (number of parameters)				
	M7	-1215.04			-
	M8	-1211.16	(M7 vs. M8) 7.76	0.0206	5, 22, 35, 51, 66, 121, 129
	M8fix	-1214.71	(M8fix vs M8) 7.1	0.007	

Scheme S1 Alignment for sperm whale, pig, bovine, dog, sheep, horse and human

myoglobin (Mb) sequences.

CLUSTAL O(1.1.0) multiple sequence alignment

SP sp P02185 MYG_PHYMC MYG_PHYMC MVLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRFKHLKTEAEMKASE 60
SP sp P02189 MYG_PIG MYG_PIG MGLSDGEWQLVLNVWGKVEADVAGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASE 60
SP sp P02192 MYG_BOVIN MYG_BOVIN MGLSDGEWQLVLNAWGKVEADVAGHGQEVLIRLFTGHPETLEKFDKFKHLKTEAEMKASE 60
SP sp P02159 MYG_LYCPI MYG_LYCPI MGLSDGEWQIVLNIWGKVETDLAGHGQEVLIRLFKNHPETLDKFDKFKHLKTEDEMKGSE 60
SP sp P02190 MYG_SHEEP MYG_SHEEP MGLSDGEWQLVLNAWGKVEADVAGHGQEVLIRLFTGHPETLEKFDKFKHLKTEAEMKASE 60
\$P sp P68082 MYG_HORSE MYG_HORSE MGL\$DGEWQQVLNVWGKVEADIAGHGQEVLIRLFTGHPETLEKFDKFKHLKTEAEMKASE 60
SP sp P02144 MYG_HUMAN MYG_HUMAN MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASE 60
* **.**** ** * *****.******************

SP|sp|P02185|MYG_PHYMC|MYG_PHYMC DLKKHGVTVLTALGAILKKKGHHEAELKPLAQSHATKHKIPIKYLEFISEAIIHVLHSRH 120 SP|sp|P02189|MYG_PIG|MYG_PIG DLKKHGNTVLTALGGILKKKGHHEAELTPLAQSHATKHKIPVKYLEFISEAIIQVLQSKH 120 SP|sp|P02192|MYG_BOVIN|MYG_BOVIN DLKKHGNTVLTALGGILKKKGHHEAELKPLAQSHATKHKIPVKYLEFISDAIIHVLHAKH 120 SP|sp|P02190|MYG_SHEEP|MYG_SHEEP DLKKHGNTVLTALGGILKKKGHHEAELKPLAQSHATKHKIPVKYLEFISDAIIHVLHAKH 120 SP|sp|P08082|MYG_HORSE|MYG_HORSE DLKKHGTVLTALGGILKKKGHHEAELKPLAQSHATKHKIPVKYLEFISDAIIHVLHAKH 120 SP|sp|P02144|MYG_HORSE|MYG_HORSE DLKKHGTVLTALGGILKKKGHHEAELKPLAQSHATKHKIPVKYLEFISDAIIHVLHAKH 120 SP|sp|P02144|MYG_HORSE|MYG_HORSE DLKKHGTVLTALGGILKKKGHHEAELKPLAQSHATKHKIPVKYLEFISDAIIHVLHSKH 120 SP|sp|P02144|MYG_HUMAN|MYG_HUMAN DLKKHGATVLTALGGILKKKGHHEAELKPLAQSHATKHKIPVKYLEFISDAIIHVLHSKH 120 SP|sp|P02144|MYG_HUMAN|MYG_HUMAN DLKKHGATVLTALGGILKKKGHHEAELKPLAQSHATKHKIPVKYLEFISDAIIHVLHSKH 120

Scheme S2 The most probable cetacean ancestor with the complete phylogenetic tree (Figure 1-B), primate-rodent truncated tree, and only the cetacean clade.

Truncated tree Cetacean clade Complete tree	MVLSDGEWQLVLNVWAKVEADVAGHGQDILIRLFKGHPETLEKFDKFKHLKTEAEMKASE 60 MVLSDAEWQLVLNIWAKVEADVAGHGQDILIRLFKGHPETLEKFDKFKHLKTEAEMKASE 60 MVLSDGEWQLVLNVWAKVEADVAGHGQDILIRLFKGHPETLEKFDKFKHLKTEAEMKASE 60 *****
Truncated tree Cetacen clade Complete tree	DLKKHGNTVLTALGGILKKKGHHEAELKPLAQSHATKHKIPIKYLEFISEAIIHVLHSRH 120 DLKKHGNTVLTALGGILKKKGHHEAELKPLAQSHATKHKIPIKYLEFISDAIIHVLHSRH 120 DLKKHGNTVLTALGGILKKKGHHEAELKPLAQSHATKHKIPIKYLEFISEAIIHVLHSRH 120
Truncated tree Cetacean clade Complete tree	PGDFGADAQAAMNKALELFRKDIAAKYKELGFQG 154 PGDFGADAQAAMNKALELFRKDIAAKYKELGFQG 154 PGDFGADAQAAMNKALELFRKDIAAKYKELGFQG 154 ************************************

Evaluating the robustness of positive selection with the gene-tree rather organism-tree for cetacean Mbs

To evaluate the robustness of positive selection with the gene-tree rather the species-tree, we have used the Maximum Likelihood method based on the Dayhoff matrix based model to make the phylogeny as shown in Figure 3. The bootstrap consensus tree inferred from 1000 replicates is taken to represent the evolutionary history of the taxa analyzed. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches. A discrete Gamma distribution was used to model evolutionary rate differences among sites (4 categories (+*G*, parameter = 0.6640)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 10 amino acid sequences. There were a total of 154 positions in the final dataset. Evolutionary analyses were conducted in MEGA5.

Figure 3. The gene-tree for the cetacean Mbs using the maximum likelihood estimation based on Dayhoff substitution model. Rate heterogeneity is allowed by using a discrete gamma distribution with four categories. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches.

Positive selection inferred in amino acid sites and judged by Likelihood ratio tests is also significant by using the gene-tree (see Table 1 below).

Table S7 LRT values for M7 vs. M8 and M8 vs. M8fix for the gene tree of cetaceans rather than using the species tree.

Model	ln L	241	P-value	Positively selected sites (BEB: P(ω>1)>0.50)
M7	-1399.00			
M8	-1391.65	(M7 vs. M8) 14.7	0.00064	5, 22, 35, 51, 66, 121, 129
M8fix	-1396.86	(M8fix vs M8) 10.42	0.0012	

Rank	Name in the phylogeny (full common name)	Species name	Accession number-	Accession number-
			Protein sequence ^a	Nucleotide sequence
1	B_s_dolphin	Delphinus	P68276	NA
	(Black sea dolphin)	delphis		
2	P_s_dolphin	Stenella	Q0KIY7	BAF03580 ^b
	(Pantropical spotted dolphin)	attenuata		
3	A_bn_dolphin	Tursiops	P68279	NA
	(Atlantic bottle-nosed	truncatus		
	dolphin)			
4	H_porpoise (Harbor	Phocoenoides	P68278	NA
	porpoise)			
5	D_porpoise (Dall's porpoise)	Phocoenoides	P68277	NA
		dalli dalli		1
6	M_h_whale (Melon-headed	Peponocephala	Q0KIY3	BAF03584 ^b
	whale)	electra		
7	Lf_p_whale (Long-finned	Globicephala	P02174	NA
-	pilot whale)	melas		
8	K_whale (Killer whale)	Orcinus orca	P02173	NA
9	A_dolphin (Amazon	Inia geoffrensis	P02181	NA
10	dolphin)		0.01111/0	DAFORED
10	S_b_whale (Stejneger's	Mesoplodon	QOKIYO	BAF03587°
11	beaked whale)	stejnegeri	D02102	274
11	H_b_whale (Hubb's beaked	Mesoplodon	P02183	IVA
10	L h whale (L on gmon's	Indonastus	OOVIVO	DAE02579 ^b
12	L_0_whate (Longman's	ndopacetus	QUALLA	DAF03378
12	G h whale (Goose healed	Ziphius	D02182	NA
15	whale)	Cavirostris	102102	IV/A
14	P h whale (Pigmy Bryde's	Balaenontera	OOKIY2	BAE03585 ^b
17	whale)	edeni	Quin 12	D/H 05505
15	S whale (Sperm whale)	Physeter	P02185	BAF03579 ^b
10		macrocephalus	102100	Diff 00075
16	P s whale (Pygmy sperm	Kogia	O0KIY5	BAF03582 ^b
10	whale)	breviceps	201110	2111 000 02
17	D s whale (Dwarf sperm	Kogia sima	P02184	NA
	whale)	C		
18	Hu_whale (Humpback	Megaptera	P02178	NA
	whale)	novaeangliae		
19	Fi_whale (Finback whale)	Balaenoptera	P02180	NA
		physalus		
20	C_g_whale (California gray	Eschrichtius	P02177	NA
	whale)	gibbosus		
21	Sei_whale (Sei whale)	Balaenoptera	Q0KIY1	BAF03586 ^b
		borealis		

Table S8 Species name and accession number of Mb sequences used in this study.

NU=Not used, *NA*=Not Available, a: Taken from Uniprot database⁶, b: Take from EMBL database⁷, c:Taken from Ensembl genome browser⁸.

	Name in the	Species name	Accession	Accession number-
Rank	phylogeny		number-	Nucleotide sequence
	(full common name)		Protein	1
	()		sequence	
22	C_m_whale (Common	Balaenoptera	•	BAF03583 ^b
	minke whale)	acutorostrata	P02179	
	,			
23	Bovine (Bovine)	Bos taurus	P02192	BAA00311 ^b
24	A_bison (American	Bison bison	P86873	NA
	bison)			
25	D_w_buffalo	Bubalus	P84997	NA
	(Domestic water	bubalis		
	buffalo)			
26	W_yak (Wild yak)	Bos mutus	Q2MJN4	NA
		grunniens		
27	Sheep (Sheep)	Ovis aries	P02190	ABJ97274 ^b
28	R_deer (Red deer)	Cervus	P02191	NA
		elaphus		
29	Goat (Goat)	Capra hircus	B7U9B5	NA
30	Pig (Pig)	Sus scrofa	P02189	AAA31073 ^b
31	P_zebera (Plains zebra)	Equus	P68083	NA
		burchelli		
32	Horse (Horse)	Equus caballus	P68082	NM_001164016.1 ^c
33	E_badger	Meles meles	P02157	NA
34	G_seal (Gray seal)	Halichoerus	P68081	NA
		grypus		
35	H_seal (Harbor seal)	Phoca vitulina	P68080	NA
36	B_seal (Baikal seal)	Phoca sibirica	P30562	NA
37	Ca_sealion (California	Zalophus	P02161	NA
	sealion)	californianus		
38	E_r_otter	Lutra lutra	P11343	NA
	(Eueopean river otter)			
39	Dog (Dog)	Canis	P63113	NA
		familiaris		
40	Cat (Cat)	Felis catus	NU	ENSFCAT00000010057 ^d
41	A_w_dog (African wild	Lycaon pictus	P02159	NA
	dog)			
42	C_fox (Cape fox)	Vulpes chama	P02160	NA
43	B_e_folx (Bat-eared	Otocyon	P63114	NA
	fox)	megalotis		
44	Microbat (Microbat)	Corynorhinus	NU	ENSMLUG0000013313 ^c
		townsendii		
45	E_f_bat (Egyptian fruit	Rousettus	P02163	NA
	bat)	aegyptiacus		

Rank	Name in the	Species name	Accession	Accession number-
	phylogeny	-	number-	Nucleotide sequence
	(full common name)		Protein	_
			sequence	
46	G_s_rat (Guaira spiny	Proechimys	P04249	NA
	rat)	guairae		
47	P_viscacha (Plains	Lagostomus	P04250	NA
	viscacha)	maximus		
48	N-gundi (Northern	Ctenodactylus	P20856	NA
	gundi)	gundi		
49	E_beaver (Eurasian	Castor fiber	P14396	NA
	beaver)			
50	MBE_rat (Middle East	Spalax	P04248	NA
	blind mole rat)	ehrenbergi		
51	Muskrat (Muskrat)	Ondatra	P32428	NA
		zibethicus		
52	Rat (Rat)	Rattus	Q9QZ76	ENSDORG0000014500 ^c
		norvegicus		
53	K_rat (Kangaroo rat)	Dipodomys	NU	ENSDORG00000014500 ^c
54	Ginea_pig (Ginea pig)	Cavia porcellus	NU	ENSCPOG0000006864 ^c
55	Mouse (Mouse)	Mus musculus	P04247	ENSMUSG0000018893 ^c
56	S_a_pika (Southern	Ochotona	P02171	NA
	American pika)	princeps		
57	B_l_pika (Black-	Ochotona	Q6PL31	NA
	lipped pika)	curzoniae		
58	Rabbit (Rabbit)	Oryctolagus	P02170	NA
		cuniculus		
59	Chimpanzee	Pan troglodytes	P02145	ENSPTRG00000023553 [°]
	(Chimpanzee)			
60	Human (Human)	Homo sapiens	P02144	ENSG00000198125 ^c
61	M_gorilla (Mountain	Gorilla gorilla	P02147	ENSGGOG0000011478 ^c
	gorilla)	beringei		
62	B_orangutan (Bornean	Pongo	P02148	NA
	orangutan)	pygmaeus		
63	Siamang (Siamang)	Hylobates	P62735	NA
		syndactylus		
64	A_gibbon (Agile	Hylobates	P62734	ENSNLEG00000014375 ^c
	gibbon)	agilis		
65	H_langur (Hanuman	Semnopithecus	P68085	NA
	langur)	entellus		
66	R_guenon (Red	Erythrocebus	P68086	NA
	guenon)	patas		
67	C_e_macaque (Crab-	Macaca	P02150	ENSMMUG0000005034 ^c
	eating macaque)	fascicularis		
68	O_baboon (Olive	Papio anubis	P68084	NA
	baboon)			

Rank	Name in the	Species name	Accession	Accession number-
	phylogeny		number-	Nucleotide sequence
	(full common name)		Protein	
			sequence	
69	B_w_monkey (Brown	Lagothrix	P02154	NA
	woolly monkey)	lagotricha		
70	N_monkey (Night monkey)	Aotus trivirgatus	P02151	NA
71	Wte_marmoset	Callithrix	P02152	ENSCJAG0000000506 ^c
	(White-tufted-ear	jacchus		
	marmoset)			
72	Cs_monkey	Saimiri sciureus	P02155	NA
	(Common squirrel			
	monkey)			
73	B_c_capuchin	Cebus apella	P02153	NA
	(Brown-capped			
	capuchin)			
74	G_galago (Greater	Otolemur	P02168	ENSOGAG0000005651 ^c
	galago)	crassicaudatus		
75	S_ioris (Slow loris)	Nycticebus	P02167	NA
		coucang		
76	Potto (Potto)	Perodicticus	P02166	NA
		potto edwarsi		
77	W_lemur (Weasel	Lepilemur	P02169	ENSMICG00000014107 °
	sportive lemur)	mustelinus		
78	T_shrew (Tree shrew)	Tupaia glis	P02165	ENSTBEG0000002813
79	Aardvark (Aardvark)	Orycteropus afer	P02164	
80	In_elephant (Indian	Elephas	P02186	ENSLAFG00000023176
	elephant)	maximus		
81	A_elephant (African	Loxodonta	P02187	NA
	elephant)	africana		
82	Hyrax (Hyrax)	Procavia	NU	ENSPCAG0000003717°
		capensis	D 00100	
83	Na_opossum (North	Didelphis	P02193	NA
	American opossum)	marsupialis		
0.1		virginiana	D00104	
84	K_Kangaroo (Red	Macropus rutus	P02194	NA
07	kangaroo)	TT 1 1	D02107	X74
85	A_echidna	Tachyglossus	P02195	NA
	(Australian echidna)	aculeatus		
		aculeatus		

Rank	Name in the phylogeny (full common name)	Species name	Accession number- Protein	Accession number- Nucleotide sequence
			sequence	
86	D_platypus (Duckbill	Ornithorhynchus	P02196	ENSOANG0000010874 ^c
	platypus)	anatinus		
87	We_hedgehog	Erinaceus	P02156	ENSEEUG0000005138 ^c
	(Western european	europaeus		
	hedgehog)			
88	Z_finch (Zebra finch)	Taeniopygia	H0ZKN4	ENSTGUG0000010818 ^c
		guttata		

CODEML output for ML estimation of dN/dS for the mammalian tree.

lnL(ntime: 65 np:130): -4872.649004 +0.000000

35...36 36...37 37...38 38...39 39...40 40...41 41...42 42...43 43...44 44...45 45...46 46..47 47..6 47..8 46..1 45..48 48..5 48..9 44..49 49..2 49..3 43..50 50..4 50..7 42..51 51..52 52..18 52..31 41..19 40..53 53..23 53..24 39..33 51..20 37..54 57..58 58..21 58..22 55..29 38..26 54..55 55..56 56..57 57..28 56..34 59..61 61..14 61..62 62..12 62..63 54..59 59..60 60..16 60..17 63..13 63..64 64..15 64..65 65..10 65..11 36..66 66..25 66..27 35..32 35..30

0.584809 0.074657 0.042898 0.000004 0.010941 0.034051 0.060302 0.110256 0.000004 0.013758 0.101162 0.000004 0.144838 0.007257 0.016031 0.090745 0.013375 0.019617 0.089965 0.013714 0.068115 0.053076 0.047203 0.000004 0.016442 0.136696 0.205366 0.072308 0.031778 0.294705 0.100081 0.271188 0.129317 0.429174 0.468055 0.000004 0.070835 0.048026 0.023908 0.409510 0.122394 0.107222 0.310555 0.403000 0.167701 0.000004 0.133405 0.153733 0.244236 0.133067 0.177681 0.062640 0.104159 0.040638 0.023365 0.006463 0.019474 0.008152 0.036874 0.014403 0.045353 0.274313 0.174368 0.316042 1.076215 0.030549 0.104180 0.082713 0.000100 999.000000 0.163035 0.048265 0.151570 0.000100 999.000000 0.623015 0.000100 0.397076 0.000100 0.133631 0.152928 0.183448 0.399032 0.358904 0.000100 0.265186 0.291258 0.137223 0.000100 0.137245 0.056099 0.157465 0.041776 0.147009 0.037426 0.107210 0.033873 0.328011 0.152701 0.034302 7.069095 0.086784 0.073461 999.000000 0.058117 0.078421 0.124204 0.053060 0.041973 0.021899 0.000100 0.032308 0.101873 0.104325 0.081870 0.122353 0.039095 0.014248 0.718144 0.000100 999.000000 0.096304 0.000100 0.000100 0.156876 0.255623 0.103774 0.084310 0.048824 0.080762

Note: Branch length is defined as number of nucleotide substitutions per codon (not per neucleotide site).

tree length = 8.45964

(((((((((((((((((((((((((((((((((()) b_whale: 0.144838, S_b_whale: 0.007257): 0.000004, L_b_whale: 0.016031): 0.101162, (M_h_whale: 0.013375, Dolphin: 0.019617): 0.090745): 0.013758, (S_whale: 0.013714, P_s_whale: 0.068115): 0.089965): 0.000004, (M_whale: 0.047203, Sei_whale: 0.000004): 0.053076): 0.110256, (Pig: 0.136696, (Sheep: 0.072308, Cow: 0.031778): 0.205366): 0.016442): 0.060302, Horse: 0.294705): 0.034051, (Cat: 0.271188, Dog: 0.129317): 0.100081): 0.010941, Microbat: 0.429174): 0.000004, Hedgehog: 0.468055): 0.042898, (((((Rat: 0.122394, Mouse: 0.107222): 0.409510, K_rat: 0.310555): 0.023908, Guinea_pig: 0.403000): 0.048026, Tree_shrew: 0.167701): 0.070835, ((Lemur: 0.153733, Galago: 0.244236): 0.133405, (Marmoset: 0.177681, (Macaque: 0.104159, (Gibbon: 0.023365, (Gorilla: 0.019474, (Human: 0.036874, Chimp: 0.014403): 0.008152): 0.006463): 0.040638): 0.062640): 0.133067): 0.000004): 0.000004): 0.074657, (Elephant: 0.274313, Hyrax: 0.174368): 0.045353): 0.584809, Platypus: 0.316042, Z_finch: 1.076215);

Detailed output identifying parameters

w (dN/dS) for branches: $0.03055 \ 0.10418 \ 0.08271 \ 0.00010 \ 999.00000 \ 0.16303 \ 0.04826 \ 0.15157 \ 0.00010 \ 999.00000 \ 0.62301 \ 0.00010 \ 0.39708 \ 0.00010 \ 0.13363 \ 0.15293 \ 0.18345 \ 0.39903 \ 0.35890 \ 0.00010 \ 0.26519 \ 0.29126 \ 0.13722 \ 0.00010 \ 0.13725 \ 0.05610 \ 0.15746 \ 0.04178 \ 0.14701 \ 0.03743 \ 0.10721 \ 0.03387 \ 0.32801 \ 0.15270 \ 0.03430 \ 7.06910 \ 0.08678 \ 0.07346 \ 999.00000 \ 0.05812 \ 0.07842 \ 0.12420 \ 0.05306 \ 0.04197 \ 0.02190 \ 0.00010 \ 0.03231 \ 0.10187 \ 0.10433 \ 0.08187 \ 0.12235 \ 0.03909 \ 0.01425 \ 0.71814 \ 0.00010 \ 999.00000 \ 0.09630 \ 0.00010 \ 0.09630 \ 0.00010 \ 0.15688 \ 0.25562 \ 0.10377 \ 0.08431 \ 0.04882 \ 0.08076$

CODEML output for ML estimation of dN/dS for the whale clade of the mammalian tree.

TREE # 1: ((((1, 8), (5, 9)), (2, 3)), (6, (4, 7)), 10); MP score: 110 lnL(ntime: 17 np: 34): -1236.397819 +0.000000 11..12 12..13 13..14 14..1 14..8 13..15 15..5 15..9 12..16 16..2 16..3 11..17 17..6 17..18 18..4 18..7 11..10 0.000004 0.015419 0.108174 0.020475 0.000004 0.080726 0.013206 0.019818 0.099070 0.013827 0.068445 0.061192 0.000004 0.000004 0.040176 0.006770 0.338735 0.000100 999.000000 0.468419 0.092380 0.000100 0.215621 0.181910 0.403131 0.253993 0.000100 0.264662 0.239922 0.000100 0.000100 0.186734 0.000100 0.123082

Note: Branch length is defined as number of nucleotide substitutions per codon (not per neucleotide site).

tree length = 0.88605

((((1: 0.020475, 8: 0.000004): 0.108174, (5: 0.013206, 9: 0.019818): 0.080726): 0.015419, (2: 0.013827, 3: 0.068445): 0.099070): 0.000004, (6: 0.000004, (4: 0.040176, 7: 0.006770): 0.000004): 0.061192, 10: 0.338735);

((((L_b_Whale: 0.020475, S_b_whale: 0.000004): 0.108174, (M_h_whale: 0.013206, Dolphin: 0.019818): 0.080726): 0.015419, (S_whale: 0.013827, P_s_whale: 0.068445): 0.099070): 0.000004, (P_b_whale: 0.000004, (M_whale: 0.040176, Sei_whale: 0.006770): 0.000004): 0.061192, Human: 0.338735);

Detailed output identifying parameters

w (dN/dS) for branches: 0.00010 999.00000 0.46842 0.09238 0.00010 0.21562 0.18191 0.40313 0.25399 0.00010 0.26466 0.23992 0.00010 0.00010 0.18673 0.00010 0.12308

CODEML output for ML estimation of dN/dS for the terrestrial clade of the mammalian tree.

TREE # 1: (((((((((22, 9), 11), 10), (14, 15)), 24), 17), ((((((13, 12), 19), 25), 20), ((8, 7), (5, (3, (4, (6, (2, 1))))))), (16, 18)), 23, 21); MP score: 698

lnL(ntime: 0 np: 48): -4469.293861 +0.000000

 $\begin{array}{c} 2.132874 & 0.205803 & 0.177989 & 0.027162 & 0.000100 & 0.244110 & 0.023127 & 0.069289 & 0.239596 \\ 0.117675 & 0.052670 & 0.033534 & 0.098425 & 0.101625 & 0.071061 & 0.267009 & 0.295372 & 0.054535 \\ 0.176578 & 0.157013 & 0.107313 & 0.246148 & 0.090720 & 0.094597 & 0.141986 & 0.106614 & 0.065221 \\ 0.036812 & 0.000100 & 0.064889 & 0.117602 & 0.199427 & 0.134152 & 0.154916 & 0.035965 & 0.021182 \\ 0.414814 & 0.000100 & 999.000000 & 0.103703 & 0.000100 & 0.177970 & 0.000100 & 0.117072 & 0.130268 \\ 0.097307 & 0.055631 & 0.125422 \end{array}$

tree length = 2.89227

((((((((Cow: 0.014664, Sheep: 0.024835): 0.107857, Pig: 0.033307): 0.024740, Horse: 0.096967): 0.022258, (Cat: 0.061968, Dog: 0.071931): 0.125947): 0.013695, Microbat: 0.159251): 0.020547, Hedgehog: 0.104168): 0.032203, (((((Mouse: 0.059425, Rat: 0.029436): 0.162509, K_rat: 0.077621): 0.017955, Guinea_pig: 0.128501): 0.017460, Tree_shrew: 0.044689): 0.011044, ((Galago: 0.125528, Lemur: 0.027376): 0.024531, (Marmoset: 0.079872, (Macaque: 0.031680, (Gibbon: 0.006093, (Gorilla: 0.007188, (Chimp: 0.006173, Human: 0.011604): 0.002617): 0.004348): 0.019334): 0.016000): 0.024475): 0.014916): 0.018029): 0.038019, (Elephant: 0.112693, Hyrax: 0.069882): 0.047069): 0.024887, Platypus: 0.161489, Z_finch: 0.555492);

Detailed output identifying parameters

kappa (ts/tv) = 2.13287

w (dN/dS) for branches: 0.20580 0.17799 0.02716 0.00010 0.24411 0.02313 0.06929 0.23960 0.11767 0.05267 0.03353 0.09843 0.10162 0.07106 0.26701 0.29537 0.05454 0.17658 0.15701 0.10731 0.24615 0.09072 0.09460 0.14199 0.10661 0.06522 0.03681 0.00010 0.06489 0.11760 0.19943 0.13415 0.15492 0.03597 0.02118 0.41481 0.00010 999.00000 0.10370 0.00010 0.17797 0.00010 0.11707 0.13027 0.09731 0.05563 0.12542

NetPhos 2.0 prediction results.

Phosphorylation sites predicted: Ser: 3 Thr: 0 Tyr: 0

Serine predictions					
Name	Pos Context Score Pred				
	V				
L_b_Whale	4 -MGLSEAEW 0.008 .				
L_b_Whale	23 EADLSGHGQ 0.829 *S*				
L_b_Whale	52 KHLKSEAEM 0.975 *S*				
L_b_Whale	59 EMKASEDLK 0.047 .				
L_b_Whale	93 PLAQSHATK 0.018 .				
L_b_Whale	109 LEFISDAII 0.003 .				
L_b_Whale	118 HVLHSKHPS 0.973 *S*				
L_b_Whale	122 SKHPSDFGA 0.249 .				
	^				

Threonine predictions					
Name	Pos C	ontext Score Pred			
		V			
L_b_Whale	40	GHPETLEKF 0.361 .			
L_b_Whale	68	KHGHTVLTA 0.013 .			
L_b_Whale	71	HTVLTALGG 0.141 .			
L_b_Whale	96	QSHATKHKI 0.076 .			
L_b_Whale	133	QAAMTKALE 0.296 .			
		Λ.			

Tyrosine predictions					
Name	Pos C	ontext Score Pred			
		V			
L_b_Whale	104	IPIKYLEFI 0.025 .			
L_b_Whale	147	IAAKYKELG 0.467			
		Δ			

Phosphorylation sites predicted: Ser: 3 Thr: 0 Tyr: 0

Serine predictions Name Pos Context Score Pred v S_b_whale 4 -MGLSEAEW 0.008 S_b_whale 23 EADLSGHGQ 0.829 *S* S_b_whale 52 KHLKSEAEM 0.975 *S* S_b_whale 59 EMKASEDLK 0.047 . S b whale 93 PLAQSHATK 0.018 S_b_whale 109 LEFISDAII 0.003 S_b_whale 118 HVLHSKHPS 0.973 *S* 122 SKHPSDFGA 0.249 . S_b_whale Λ

Threonine predictions Name Pos Context Score Pred			
		V	
S_b_whale	40	GHPETLEKF 0.361 .	
S_b_whale	68	KHGHTVLTA 0.013 .	
S_b_whale	71	HTVLTALGG 0.141 .	
S_b_whale	96	QSHATKHKI 0.076 .	
S_b_whale	133	QGAMTKALE 0.296 .	
		Λ	

Tyrosine predictions				
Name	Pos (Context	Score Pred	
			V	
S_b_whale	104	IPIKY	LEFI 0.025	
S_b_whale	147	IAAKY	YKELG 0.467	7.
			^	

References

¹ Phillips SEV (1980) Structure and refinement of oxymyoglobin at 1.6 Å resolutions. J Mol Biol 142: 531-554.

² Kondrashov DA, Zhang W, Aranda IV R, Stec B, Phillips GN (2008) Sampling of the native conformational ensemble of myoglobin via structures in different crystalline environments. Proteins Struct Funct Bioinf 70:353–362.

³Nishimura C, Wright PE, Dyson HJ (2003) Role of the B helix in early folding events in apomyoglobin: evidence from site-directed mutagenesis for native-like long range interactions. J Mol Biol 334: 293–307.

⁴Hughson FM, Barrick D, Baldwin RL (1991) Probing the stability of a partly folded apomyoglobin intermediate by site-directed mutagenesis. Biochemistry 30: 4113-41 18.

⁵Barrick D, Hughson FM, Baldwin RL (1994) Molecular mechanisms of acid denaturation. The role of histidine residues in the partial unfolding of apomyoglobin. J Mol Biol 237:588–601.

⁶UniProt Consortium (2011) Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res 39, D214–D219.

⁷Kanz C, Aldebert P, Althorpe N, Baker W, Baldwin A et al. (2005) The EMBL Nucleotide Sequence Database. Nucleic Acids Res. 33:D29–D33.

⁸Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K ET AL. (2009) Ensembl 2009, Nucleic Acids Res. 2009; 37:D690–D697.