1 Materials and Methods

2

3 *Bacterial isolates*

A total of 125 CF S. maltophilia isolates from sputum and bronchoalveolar lavage 4 specimens were prospectively collected from the microbiology laboratories at the Hospital for 5 Sick Children (74 isolates from 51 CF patients; maximum of 2 isolates per patient)) and St. 6 Michael's Hospital (51 isolates from 35 CF patients; maximum of 2 isolates per patient) in 7 Toronto, Canada between January 2011 and July 2012. S. maltophilia isolates were stored at -8 9 80°C in glycerol citrate. Upon retrieval from the freezer, each isolate was subcultured 3 times onto Columbia agar with 5% sheep blood (Oxoid, Nepean, Ontario, Canada) prior to 10 susceptibility testing. 11

12

13 Antibiotic Panels

Antibiotic panels, in a 96-well microtiter plate format, were prepared with cation-14 adjusted Mueller Hinton broth (CAMHB; Becton Dickinson, Mississauga, Ontario, Canada) 15 using 9 different antibiotics (ceftazidime, ticarcillin-clavulanate, tobramycin, levofloxacin, 16 17 moxifloxacin, trimethoprim-sulfamethoxazole, doxycycline, colistin, azithromycin). All antibiotics were obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA) except for 18 ticarcillin-clavulanate (Sigma, St Louis, MO, USA), ceftazidime (GlaxoSmithKline, 19 20 Mississauga, Ontario, Canada) and moxifloxacin (Bayer, Toronto, Ontario, Canada). For ceftazidime, ticarcillin-clavulanate, moxifloxacin, trimethoprim-sulfamethoxazole and 21 doxycycline, antibiotics were tested at 2 concentrations: minimum inhibitory concentration 22 23 (MIC) at the susceptible breakpoint and MIC at the intermediate interpretative criteria

24	(correlating to serum achievable concentrations) for S. maltophilia and other non-
25	Enterobacteriaceae according to the Clinical and Laboratory Standards Institute (CLSI) (1). For
26	azithromycin, as there are no CLSI interpretative criteria for non-fermentative bacilli,
27	concentrations of 0.4 mg/L and 0.8 mg/L were chosen based on previous studies done on
28	Burkholderia cepacia and P. aeruginosa (15). Tobramycin (100 mg/L and 200 mg/L) (2) and
29	colistin (100 mg/L and 200 mg/L) (3) were tested at concentrations achievable in CF sputum by
30	aerosolization. Levofloxacin was tested at both high concentrations (50 mg/L and 100 mg/L-
31	corresponding to achievable sputum levels by aerosolization) (4-5) as well as low concentrations
32	(2 mg/L and 4 mg/L- corresponding to achievable serum levels). Each well contained 100 μl of
33	CAMHB with the antibiotic(s), alone or in combinations, at these set concentrations. In total,
34	there were 10 single drugs (9 different antibiotics including a low and high dose for
35	levofloxacin) and 37 dual drug combinations tested for each isolate. Each plate had a well that
36	was a sterility control (only broth, no antibiotics) and a well that was a growth control (broth plus
37	bacterial inoculum but no antibiotics). Antibiotic panels were stored at -80°C until use.
38	
39	Planktonic Antimicrobial Susceptibility Testing
40	Planktonic susceptibility testing of S. maltophilia isolates was performed by broth-
41	microdilution methods according to CLSI guidelines (1). Bacterial inoculum was prepared by
42	diluting 1.5 ml of a 0.5 McFarland turbidity standard with 25 ml of distilled water. 10 μ l of the
43	bacterial inoculum was added to each well of the prepared antibiotic testing panel and incubated
44	in aerobic conditions at 37° C for $18 - 24$ hours overnight. The plates were read the following day
45	by assessing turbidity within the wells as signs of bacterial growth.

47 Biofilm Antimicrobial Susceptibility Testing

S. maltophilia isolates were grown as biofilms using the Calgary biofilm technique (6) 48 with a few modifications. The bacterial inoculum was prepared by diluting 300 μ l of a 0.5 49 McFarland turbidity standard in 19.7 ml of Trypticase-Soy Broth. 100 µl of the inoculum was 50 added to each well of a 96-well microtitre plate with a peg lid (Innovotech, Manitoba, Canada). 51 The plates were incubated in aerobic conditions at 37°C on a shaker (Labnet Orbit 1000, 52 Woodbridge, New Jersey) to allow for biofilm formation on the peg lid. An estimation of the 53 inoculum was determined by measuring OD_{650nm} using the MRX Microplate Reader (Dynex 54 55 Technologies, Chantilly, Virginia) of the broth in the well in which the biofilm peg was growing. Once an OD of approximately 0.062 was achieved (known to correspond to approximately 10⁵ 56 colony forming units (CFU)/ml), the biofilm-laden peg lid was placed into the antibiotic testing 57 panel. To confirm that the proper inoculum had been achieved, an inoculum check was 58 performed by serial dilutions and plating of the broth from the well onto solid media in which the 59 biofilm peg was growing for each isolate tested. If the inoculum did not fall between 10^4 - 10^6 60 CFU/ml, testing was repeated. The antibiotic panel was then incubated for 18-24 hours under 61 aerobic conditions at 37°C. Each biofilm-laden peg was was placed in 200 µl of sterile distilled 62 water to rinse out residual antibiotics, before being placed into 100 µl of CAMHB in the 63 recovery plate. The plate was then incubated for 18-24 hours under aerobic conditions at 37°C 64 and assessed for turbidity the following day. Biofilm inhibitory concentrations were determined 65 66 as per CLSI planktonic interpretative breakpoints for single drugs.

67

68 Interpretative criteria for dual antibiotic combinations

69	For dual drug combinations, the isolate was considered: resistant if resistant to both
70	drugs; intermediate if intermediate to both drugs; and sensitive if sensitive to both drugs. For
71	example, when testing doxycycline and ceftazidime in dual drug combinations, these drugs were
72	combined in the following way: doxycycline at 4 mg/L (susceptible breakpoint) with ceftazidime
73	at 8 mg/L (susceptible breakpoint) and doxycycline at 8 mg/L (intermediate interpretative
74	criteria) with ceftazidime at 16 mg/L (intermediate interpretative criteria). If there was no growth
75	at doxycycline 4 mg/L /ceftazidime 8 mg/L, the isolate was considered susceptible. If there was
76	no growth at doxycycline 8 mg/L/ceftazidime 16 mg/L but growth at doxycycline 4
77	mg/L/ceftazidime 8 mg/L, the isolate was considered intermediate. If there was growth with both
78	of these dual drug concentrations, the isolates was considered resistant.
79	
80	Statistical Analysis
81	The proportion of isolates susceptible to different antibiotics by planktonic growth were
82	compared to results by biofilm growth using Chi-square or Fisher's exact test where appropriate
83	(GraphPad Prism version 5.04).

86	1.	Clinical and Laboratories Standards Institute. 2012. Performance standards for
87	antir	nicrobial susceptibility testing: 22 nd informational supplement M100-S22. CLSI, Wayne,
88	PA.	

2. Dales L, Ferris W, Vandemheen K, Aaron SD. 2009. Combination antibiotic

90 susceptibility of biofilm-grown Burkholderia cepacia and Pseudomonas aeruginosa isolated

91 from patients with pulmonary exacerbations of cystic fibrosis. Eur. J. Clin. Microbiol. Infect.

92 Dis. **28(10)**:1275-9.

3. San Gabriel P, Zhou J, Tabibi S, Chen Y, Trauzzi M, Saiman L. 2004. Antimicrobial

94 susceptibility and synergy studies of *Stenotrophomonas maltophilia* isolates from patients with

95 cystic fibrosis. Antimicrob. Agents Chemother. **48(1)**:168-71.

96 4. Sabet M, Miller CE, Nolan TG, Senekeo-Effenberger K, Dudley MN, Griffith DC. 2009.

97 Efficacy of aerosol MP-376, a levofloxacin inhalation solution, in models of mouse lung

98 infection due to *Pseudomonas aeruginosa*. Antimicrob. Agents Chemother. **53**(9):3923-8.

99 5. Geller DE, Flume PA, Griffith DC, Morgan E, White D, Loutit JS, Dudley, MN. 2011.

100 Pharmacokinetics and safety of MP-376 (levofloxacin inhalation solution) in cystic fibrosis

101 subjects. Antimicrob. Agents Chemother. **55**(6):2636-40.

102 6. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. 1999. The Calgary Biofilm

103 Device: new technology for rapid determination of antibiotic susceptibilities of bacterial

104 biofilms. J. Clin. Microbiol. **37**(6):1771-6.

105

106

Table 1.

109 A. Antibiotic combinations against planktonically-grown S. maltophilia isolates

Antibiotic combination	% (n) of susceptible isolates
Levofloxacin ₁₀₀ /azithromycin	99 (124)
Levofloxacin ₁₀₀ /trimethoprim-sulfamethoxazole	99 (124)
Levofloxacin ₁₀₀ /ticarcillin-clavulanate	99 (124)
Levofloxacin ₁₀₀ /colistin ₂₀₀	99 (124)
Doxycycline/colistin ₂₀₀	98 (123)
Levofloxacin ₁₀₀ /ceftazidime	98 (123)
Colistin ₂₀₀ /trimethoprim-sulfamethoxazole	98 (123)
Tobramycin/levofloxacin ₁₀₀	98 (123)
Levofloxacin ₄ /colistin ₂₀₀	98 (122)
Moxifloxacin/colistin ₂₀₀	98 (122)
Ceftazidime/colistin ₂₀₀	97 (121)
Doxycycline/ticarcillin-clavulanate	96 (120)
Doxycycline/levofloxacin ₁₀₀	96 (120)
Doxycycline/moxifloxacin	96 (120)
Doxycycline/trimethoprim-sulfamethoxazole	95 (119)
Doxycycline/ceftazidime	94 (118)
Moxifloxacin/ticarcillin-clavulanate	94 (118)
Doxycycline/levofloxacin ₄	94 (117)
Ticarcillin-clavulanate/colistin ₂₀₀	92 (115)
Levofloxacin ₄ /ticarcillin-clavulanate	92 (115)
Moxifloxacin/trimethoprim-sulfamethoxazole	92 (115)
Moxifloxacin/ceftazidime	92 (115)
Doxycycline/azithromycin	90 (112)
Levofloxacin ₄ /trimethoprim-sulfamethoxazole	90 (112)
Moxifloxacin/tobramycin ₂₀₀	86 (107)
Doxycycline/tobramycin ₂₀₀	84 (105)
Moxifloxacin/azithromycin	84 (105)
Levofloxacin ₄ /ceftazidime	83 (104)
Tobramycin ₂₀₀ /trimethoprim-sulfamethoxazole	82 (102)
Ticarcillin-clavulanate/trimethoprim-sulfamethoxazole	80 (100)
Ceftazidime/trimethoprim-sulfamethoxazole	79 (99)
Tobramycin ₂₀₀ /ticarcillin-clavulanate	72 (90)
Levofloxacin ₄ /azithromycin	69 (86)
Tobramycin ₂₀₀ /ceftazidime	65 (81)
Tobramycin ₂₀₀ /azithromycin	61 (76)
Ticarcillin-clavulanate/azithromycin	34 (42)
Ceftazidime/azithromycin	21 (26)

Antibiotic combination	% (n) of susceptible isolates
Ceftazidime/colistin ₂₀₀	65 (81)
Levofloxacin ₁₀₀ /ticarcillin-clavulanate	62 (78)
Colistin ₂₀₀ /trimethoprim-sulfamethoxazole	62 (78)
Moxifloxacin/colistin ₂₀₀	61 (76)
Doxycycline/colistin ₂₀₀	60 (75)
Levofloxacin ₁₀₀ /ceftazidime	59 (74)
Levofloxacin ₁₀₀ /azithromycin	58 (73)
Levofloxacin ₁₀₀ /colistin ₂₀₀	58 (72)
Levofloxacin ₄ /colistin ₂₀₀	58 (72)
Ticarcillin-clavulanate/colistin ₂₀₀	58 (72)
Levofloxacin ₁₀₀ /trimethoprim-sulfamethoxazole	51 (64)
Doxycycline/levofloxacin ₁₀₀	44 (55)
Moxifloxacin/ceftazidime	39 (49)
Tobramycin ₂₀₀ /levofloxacin ₁₀₀	37 (46)
Moxifloxacin/trimethoprim-sulfamethoxazole	35 (44)
Moxifloxacin/ticarcillin-clavulanate	33 (41)
Moxifloxacin/azithromycin	30 (37)
Moxifloxacin/tobramycin ₂₀₀	29 (36)
Doxycycline/tobramycin ₂₀₀	24 (30)
Levofloxacin ₄ /trimethoprim-sulfamethoxazole	22 (28)
Levofloxacin ₄ /ceftazidime	22 (28)
Doxycycline/ticarcillin-clavulanate	21 (26)
Doxycycline/moxifloxacin	21 (26)
Levofloxacin ₄ /azithromycin	21 (26)
Tobramycin ₂₀₀ /trimethoprim-sulfamethoxazole	21 (26)
Doxycycline/levofloxacin ₄	19 (24)
Doxycycline/ceftazidime	18 (22)
Levofloxacin ₄ /ticarcillin-clavulanate	18 (22)
Ceftazidime/trimethoprim-sulfamethoxazole	17 (21)
Tobramycin ₂₀₀ /trimethoprim-sulfamethoxazole	17 (21)
Doxycycline/azithromycin	16 (20)
Doxycycline/trimethoprim-sulfamethoxazole	14 (18)
Tobramycin ₂₀₀ /ceftazidime	14 (17)
Tobramycin ₂₀₀ /azithromycin	13 (16)
Ticarcillin-clavulanate/ trimethoprim-sulfamethoxazole	11 (14)
Ticarcillin-clavulanate/azithromycin	6 (8)
Ceftazidime/azithromycin	6 (8)

B. Antibiotic combinations against biofilm-grown *S.maltophilia* isolates