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I.  Synthesis and characterization of α-syn C-terminal peptides 
 
 
 
 
 
Peptide: α-Syn(A107C-140) 
sequence: CPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA 
synthetic specifications: couplings used HBTU; double couplings performed  at Cys107, 
Glu109, Met-116, Asp-119, and Met-127 
yield: 25% 
expected mass: 3886 Da 
 
 
 

 
 
 
 
Figure S1.  a) MALDI-TOF analysis (observed mass=3885.85Da) and b) RP-HPLC 
analysis of purified α-syn A107C-140 on a C18 analytical column (CosmoSil Protein-R, 
4.6x250 mm, 5µm particle size) with a linear gradient of 0 to 80%B over 30min (A: 
water/0.1%TFA and B: acetonitrile/0.1% TFA).  
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Peptide: α-syn(A107C-140)_pY125 
sequence: CPQEGILEDMPVDPDNEA-pY-EMPSEEGYQDYEPEA 
synthetic specifications: see above 
yield: 25% 
expected mass: 3969 Da 
 
 
 
 

 

 
 
 
 
Figure S2.  a) MALDI-TOF analysis (observed mass= 3968 Da). b) RP-HPLC analysis of 
purified α-syn A107C-140_pY125 on a C18 analytical column (CosmoSil Protein-R, 
4.6x250 mm, 5µm particle size) with a linear gradient of 0 to 80%B over 30min (A: 
water/0.1%TFA and B: acetonitrile/0.1% TFA). 
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II. Generation of 15N-labeled α-syn(1-106)SR and  
non-labeled α-syn(1-106)SR 

 
Non-labeled α-syn(1-106)SR 

 
Figure S3.  a) MALDI-TOF analysis (observed mass= 10739). The mass 5367 
corresponds to the double-charged. b) RP-HPLC analysis of purified α-syn(1-106)SR on 
a C4 analytical column (CosmoSil 5C4) with a linear gradient of 0 to 80%B over 15min 
(A: water/0.1%TFA and B: acetonitrile/0.1% TFA). 
 
 
15N labeled α-syn (1-106)SR  
 

 
Figure S4.  a) MALDI-TOF analysis (observed mass= 10870). The mass 5434 
corresponds to the double-charged. b) RP-HPLC analysis of purified α-syn(1-106)SR 15N 
labeled on a C4 analytical column with a linear gradient of 0 to 80%B over 30min (A: 
water/0.1%TFA and B: acetonitrile/0.1% TFA) 
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III.  Semisynthesis and purification of WT α-syn and pY125 α-syn 
 

 
 
α-SynA107C wild-type 

 
 
Figure S5.  SDS-PAGE analysis of native chemical ligation reaction between α-syn(1-
106)SR and α-syn(A107C-140). 
 
 

 
 
 
Figure S6. a) MALDI-TOF analysis of the desulfurized product (expected mass: 14461). 
The mass of 14676 corresponds to a sinapinic matrix adduct and the mass of 7233 to the 
double-charged. b) RP-HPLC of semi-synthetic WT α-syn on an analytical C18 with a 
linear gradient of 0 to 80%B over 30min (A: water/0.1%TFA and B: acetonitrile/0.1% 
TFA). 
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α-synA107C_pY125 

 
 
 
Figure S7.  SDS-PAGE analysis of native chemical ligation reaction between α-syn(1-
106)SR and α-syn(A107C-140_pY125). Note: the ligation corresponding to the gel was 
done with two molar excess of α-syn(1-106)SR.  
 
 
 

 
 
 
Figure S8.  a) MALDI-TOF analysis of the desulfurized product (expected mass: 14541). 
The mass of 14744 corresponds to a sinapinic matrix adduct and the mass of 7220 to the 
double-charged. b) RP-HPLC of semi-synthetic pY125 α-syn on an analytical C18 with a 
linear gradient of 0 to 80%B over 30min (A: water/0.1%TFA and B: acetonitrile/0.1% 
TFA). 
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General scheme of ligation and purification 
 
 
 
 
 

 
 
 
 
 
 
Figure S9.  Scheme of the main steps for the generation of pY125 α-syn: ligation, 
desulfurization and purification by chromatographic methods.   
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Figure S10.  Scheme of the cation-exchange chromatography purification of pY125 α-
syn.  
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Figure S11.  A: SDS-PAGE analysis of the fractions containing pY125 α-syn (eluting 
from the cation exchange column at pH 5). B: SDS-PAGE analysis of the pure 
lyophilized pY125 α-syn.  
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IV. Generation of α-syn A107C N15 labeled and Semisynthesis of α-syn 
A107C_pY125 N15 labeled. 

 
 
α-synA107C 15N labeled 

 
Figure S12.  a) MALDI-TOF analysis of the protein (expected mass: 14659). The mass of 
14866 corresponds to a sinapinic matrix adduct and the mass of 7329 to the double-
charged. b) RP-HPLC of 15N labeled α-syn A107C on an analytical Protein-R C18 
column with a linear gradient of 0 to 80%B over 30min (A: water/0.1%TFA and B: 
acetonitrile/0.1% TFA). 
 
 
α-synA107C_pY125 15N labeled 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S13.  a) MALDI-TOF analysis of the ligated product (expected mass: 14701). The 
mass of 14913 corresponds to a sinapinic matrix adduct and the mass of 7350 to the 
double-charged. b) RP-HPLC of semi-synthetic pY125 α-syn 15N labeled on an 
analytical Protein-R C18 column with a linear gradient of 0 to 80%B over 30min (A: 
water/0.1%TFA and B: acetonitrile/0.1% TFA).  
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V. TEM images of recombinant and semisynthetic WT α-syn  
 

 
 
 
 
 
 
 
 

 
 
 
Figure S14.  TEM images of recombinant WT and semisynthetic α-syn incubated for 7 
days on a rotating wheel at 37°C. The images are representative of 3 independent 
experiments. The scale bars represent 200nm.  
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VI. Analysis of HEK and HeLa cells and mouse neurons treated with 
pervanadate: detection of non-specific bands 

 
 

 
 

 
 
 
 
 
 
Figure S15.  A. Immunoblots of HEK293 (left) and HeLa (right) cells over-expressing 
WT α-syn and treated with pervanadate for 5, 10 and 20min. Membranes were probed 
with WT α-syn (Biomol SA3400) and pY125 antibodies (BD Pharmigen). B. 
Immunoblots of mouse α-syn KO primary neurons treated with pervanadate for 30min. 
Membranes were probed with WT α-syn (BD transduction laboratory) and pY125 
antibodies (BD Pharmigen). 
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Figure S16.  Confocal images of HeLa cells over-expressing WT or Y125F α-syn and 
treated with pervanadate for 30min. The cells were fixed and stained with anti-pY125 
antibody (BD pharmigen) and anti-α-syn (abcam). 
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VII . Cross-talk between α-syn phosphorylation at S87 and Y125: 

in vitro phosphorylation assay 
 

 
 

Figure S17.  A: Immunoblots of pY125 α-syn phosphorylated using CK1 and PLK3. Membranes were 
probed using pS87, pY125, and α-syn antibodies. B: Immunoblots of pS87 α-syn phosphorylated using 
Syk, Lyn, Fyn, c-Src, and c-Fgr. Membranes were probed for pY125, pS87, and α-syn 
immunoreactivity. D: MALDI-TOF analysis of pS87 α-syn (a) phosphorylated by Syk (b), Lyn (c), Fyn 
(d), c-Src (e), and c-Fgr (f) after 14h of reaction. In all MALDI-TOF-MS spectra, the symbol ‘n’ 
indicates the starting material peak, while the numbers above other peaks correspond to the number of 
phosphorylation events, each detected by a +80 Da mass shift. The symbol ‘*’ indicates a sinapinic acid 
matrix adduct.  
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Supporting information for the figure S17: 
To obtain site-specific phosphorylation at S87, S129A α-syn was incubated with CKI until 
phosphorylation at S87 was complete, then pS87 α-syn was purified by reversed-phase HPLC, and 
incubated with the tyrosine kinases in the same conditions as in the experiment with pS129 α-syn. 
Using first the mutant S129A α-syn, we showed that the S129A mutation itself did not influence 
phosphorylation at Y125 (not shown). Using the purified pS87 α-syn, we observed that the behavior of 
pS87 α-syn is similar to that of pS129 α-syn and WT α-syn: phosphorylation at Y125 by Syk is very 
efficient as judged by Western Blot (Supplementary Figure S17 B) but again not specific as shown by 
MALDI-TOF MS (Supplementary Figure S17 C (b)). We noted, however, that pS87 α-syn might be 
more efficiently phosphorylated at Y125 by Fyn than pS129 α-syn, since a single phosphorylation 
event could be seen with pS87 α-syn but not pS129 α-syn. However, Western-Blot data does not 
support a large effect. 
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