Gene network requirements and limits for regulating metabolic gene expression to a desired state

Jan Berkhout^{1,2}, Bas Teusink^{1,2,3}, Frank J. Bruggeman^{1,3,4,*}

- 1. Systems Bioinformatics, IBIVU, Vrije Universiteit, Amsterdam, The Netherlands
- 2. Kluyver Centre for Genomics of Industrial Fermentation, The Netherlands
- 3. Netherlands Institute for Systems Biology, Amsterdam, The Netherlands
- 4. Life Sciences, Centre for Mathematics and Computer Science (CWI), Amsterdam, The Netherlands
 - * Corresponding author: f.j.bruggeman@vu.nl

Supplementary Figure 1

Figure S1: Residuals of the gene network fit. Shown are the residuals, in μ M, for the four metabolic enzymes as function of intracellular galactose. The number on top of each graph represents the sum over all internal galactose concentration of all residuals for that enzyme. A gal2p; B gal1p; C gal7pd; D gal10dp.

Supplementary Table 1

parameter	description	value	unit	# in Fig. 6
idg10d	intrinsic degradation constant of gal10pd	$1.851 \ge 10^{-1}$	\min^{-1}	37
idg10	intrinsic degradation constant of gal10p	$5.150 ext{ x } 10^{-1}$	\min^{-1}	44
idg1	intrinsic degradation constant of gal1p	$2.650 \ge 10^{-1}$	\min^{-1}	42
idg2	intrinsic degradation constant of gal2p	$2.727 ext{ x } 10^{-1}$	\min^{-1}	1
idg3i	intrinsic degradation constant of gal3p [*]	1.010	\min^{-1}	18
idg3	intrinsic degradation constant of gal3p	1.065	\min^{-1}	8
idg4dg80d	intrinsic degradation constant of gal4pd-gal80pd complex	1.537	\min^{-1}	22
idg4d	intrinsic degradation constant of gal4pd	1.050	\min^{-1}	23
idg4	intrinsic degradation constant of gal4p	1.167	\min^{-1}	19
idg7d	intrinsic degradation constant of gal7pd	$2.952 \ge 10^{-1}$	\min^{-1}	38
idg7	intrinsic degradation constant of gal7p	2.252	\min^{-1}	36
idg80d	intrinsic degradation constant of gal80pd	2.518	\min^{-1}	32
idg80g3i	intrinsic degradation constant of $gal80p-gal3p^*$ complex	1.331	\min^{-1}	47
idg80	intrinsic degradation constant of gal80p	1.996	\min^{-1}	45
idr10	intrinsic degradation constant of GAL10	5.997	\min^{-1}	41
idr1	intrinsic degradation constant of GAL1	4.889	\min^{-1}	43
idr2	intrinsic degradation constant of $GAL2$	9.803×10^{-2}	\min^{-1}	2
idr3	intrinsic degradation constant of $GAL3$	$2.549 \ge 10^{1}$	\min^{-1}	5
idr7	intrinsic degradation constant of GAL7	5.984	\min^{-1}	40
idr80	intrinsic degradation constant of $GAL80$	8.584×10^{1}	\min^{-1}	52
kfvg3i	association rate constant of Gal_{in} -gal3p complex	$2.788 \ge 10^{-4}$	$(m/c)^{-1} min^{-1}$	48
kfvg10d	association rate constant of gal10p-gal10p dimer	$1.835 \ge 10^{-1}$	$(m/c)^{-1} min^{-1}$	17
kfvg4dg80d	association rate constant of Gal_{in} -gal3p complex	$1.505 \ge 10^2$	$(m/c)^{-1} min^{-1}$	21
kfvg4d	association rate constant of gal4p-gal4p dimer	$2.163 ext{ x } 10^{1}$	$(m/c)^{-1} min^{-1}$	31
kfvg7d	association rate constant of gal7p-gal7p dimer	4.729	$(m/c)^{-1} min^{-1}$	20
kfvg80d	association rate constant of gal80p-gal80p dimer	9.641	$(m/c)^{-1} min^{-1}$	10
kfvg80g3i	association rate constant of gal80p-gal3p* complex	9.353	$(m/c)^{-1} min^{-1}$	49
kipg2	maximum initiation rate constant of gal2p	$8.698 \ge 10^2$	$(m/c)^{-1} min^{-1}$	53
kipg3	maximum initiation rate constant of gal3p	$4.419 \ge 10^{3}$	$(m/c)^{-1} min^{-1}$	50
kipg4	maximum initiation rate constant of gal4p	1.508×10^{1}	$(m/c)^{-1} min^{-1}$	35
kipg80	maximum initiation rate constant of gal80p	$3.117 \ge 10^3$	$(m/c)^{-1} min^{-1}$	4
kipstructg10	maximum initiation rate constant of gall0p	1.216×10^4	$(m/c)^{-1} min^{-1}$	16
kipstructgl	maximum initiation rate constant of gallp	1398 x 104	$(m/c)^{-1}$ min ⁻¹	13
kipstructg7	maximum initiation rate constant of gal7p	$1.456 \ge 10^4$	$(m/c)^{-1} min^{-1}$	11
kir2	maximum initiation rate constant of GAL2	3.666×10^{4}	$(m/c)^{-1} min^{-1}$	54
kir3	maximum initiation rate constant of GAL3	7.819×10^{2}	$(m/c)^{-1} min^{-1}$	51
kir80	maximum initiation rate constant of GAL80	2.392×10^2	$(m/c)^{-1} min^{-1}$	3
kirstructr10	maximum initiation rate constant of GAL10	3.154×10^{-1}	$(m/c)^{-1} \min^{-1}$	15
kirstructr1	maximum initiation rate constant of GALI	1.408×10^{-1}	$(m/c)^{-1}$ min ⁻¹ $(m/c)^{-1}$ min ⁻¹	14
Kirstructri	maximum initiation rate constant of GAL/	1.928 x 10 ⁻	(m/c) - min -	12
Kpr10 Vrr1	equilibrium constant for binding of gal4pd to GAL1	2.373 X 10	-	20
Kpr1 Vmr2	equilibrium constant for binding of gal4pd to GAL1	0.020 4.954 10 ¹	-	20
Kpr2 Kpr2	equilibrium constant for binding of gal4pd to $GAL2$	4.234 x 10 5.062	-	30 22
Kpr5 Kpr7	equilibrium constant for binding of gal4pd to $GAL3$	1.034×10^{1}	-	33 97
Kpr80	equilibrium constant for binding of gal4pd to CAL80	3.482×10^{1}		21
Ka	equilibrium constant for binding of gal\$0nd to gal4nd-DNA	1.555×10^{1}		0
krya3i	dissociation rate constant of Gal: _gal3p complex()	3.493×10^5	min^{-1}	7
kryg10d	dissociation rate constant of σ_{all} all σ_{all} dimer	1.564×10^5	min^{-1}	39
krvg4dg80d	dissociation rate constant of Gal - cal complex	6405×10^1	min^{-1}	29
krvg4d	dissociation rate constant of gal4n-gal4n dimer	1.681×10^2	min^{-1}	24
kryg7d	dissociation rate constant of gal7p-gal7p dimer	1.860×10^3	min^{-1}	34
krvg80d	dissociation rate constant of gal80p-gal80p dimer	5.982×10^4	\min^{-1}	46
krvg80g3i	dissociation rate constant of gal80n-gal3n* complex	1.489×10^2	min^{-1}	6
				-

Table S1: Fitted parameter values of the gene network.

Supplementary Figure 2

Figure S2: The effect of perturbation of gene network parameters on metabolic steady state flux. (A) For every parameter in \mathbf{p}_{g}^{o} a reference flux profile for a galactose range of 0 and 50 mM was calculated. The squared distance of this reference flux profile and the flux profile with the perturbed value is plotted for all gene network parameters. (B) The five parameters that have the biggest effect on the galactose flux profile are shown. Left column corresponds to the highest effect when the indicated parameter was perturbed 5-fold down. Right column corresponds to the highest effect when the indicated parameter was perturbed 5-fold up. (C) Explanation of occurrence of multiple minima for some of the gene network parameters, using parameter idg10 as an example. For three values of parameter idg10 (indicated by the red circles), the corresponding galactose flux profiles (red) are shown together with the reference flux profile (blue) in the right columns. The squared flux difference that corresponds with the perturbed value is shown in the black box of every plot.