Supporting Information

Structure-activity relationship study of the neuroprotective effects of Vitamin K derivatives

Benjamin J. Josey^a, Elizabeth Inks^a, Xuejun Wen,^b and C. James Chou^a*

a, Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, USA

b, Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, 23284, USA

Table of Contents

1. Figure S1: Dose-response curves of Vitamin K ₁ , Vitamin K ₂ , and control compounds Necrostatin-1, Idebenone, Coenzyme Q ₁₀ , and Trolox	2
2. Figure S2: Scaffold optimization and cell viability assay results	.2
3. Figure S3: Western blot of HO-1 and NQO-1	.3
3. Figure S4: <i>t</i> -BuOOH protection results	.4
4. Synthetic schemes and <i>in vitro</i> protection and toxicity data for classes of derivatives not included in the text	
TABLE S1 In Vitro Neuroprotective Activity of 2-amido-1,4-naphthoquinones	.5
TABLE S2. In Vitro Neuroprotective Activity of 2-ureyl-1,4-naphthoquinones	6
TABLE S3: In Vitro Neuroprotective Activity of chromone derivatives	7
5. Table S4 and S5: Mouse blood chemistry and complete blood count results	8
6. Copies of HPLC, mass spectra, and ¹ H NMR and HSQC spectral data for compounds 2q and 2j	9

FIGURE S1: Dose-response curves of Vitamin K_1 , Vitamin K_2 , and control compounds Necrostatin-1, Idebenone, Coenzyme Q_{10} , and Trolox. Cell viability assay was conducted as described in the Methods sections of the main text.

Figure S2: Scaffold optimization and cell viability assay results. Cell viability assay was conducted as described in the Methods sections of the main text.

Figure S3: Western blot of HO-1 and NQO-1. HT22 cells were treated as described for 8 hrs and the cells were harvested and .

Figure S4: t-BuOOH protection results. Cell viability assay was conducted as described in the Methods sections of the main text.

TBHP Protection

TABLE S1. In Vitro Neuroprotective Activity of 2-amido-1,4-naphthoquinones

		Protection ^a Toxicity ^b		Safety Index
Compound	R	PC ₅₀ (nM)	TC ₅₀ (nM)	TC ₅₀ / PC ₅₀
3 a	-Me	616	>100,000	162
3b	-Et	760	80,000	105
3c	×~ ⁰ ~	69	5,000	72
3d	\checkmark	>1000	8,000	0
3e	$\sqrt{2}$	>1000	6,000	0
3f		275	14,000	51
3g	$\sqrt{2}$	500	17,000	34
3h		382	24,000	63
3 i	CI	405	27,000	67
3j	CI	492	>100,000	203
3k		658	32,000	49
31		890	42,000	47
3m		161	>100,000	621

In vitro neuroprotective activity and ^bneurotoxicity assessed by treating HT22 cells with various concentrations of compounds with or without 10 mM glutamate for 24 hrs. Cell viability was estimated by treating cells with MTS and measuring absorbance at 490 nM. PC_{50} , concentration producing 50% protection, values calculated using GraphPad Prism based on 12 point titrations, $n \ge 4$; TC_{50} , concentration producing 50% toxicity, values calculated using GraphPad Prism based on 7 point titrations, $n \ge 3$.

-

TABLE S2. In Vitro Neuroprotective Activity of 2-ureyl-1,4-naphthoquinones.

		Protection ^a Toxicity ^b		Safety Index
Compound	R	PC ₅₀ (nM)	TC ₅₀ (nM)	TC ₅₀ / PC ₅₀
4 a	-Et	177	5,000	28
4b		64	8,000	125
4c	$\sqrt{2}$	890	>100,000	112
4d		740	>100,000	135

^aIn vitro neuroprotective activity and ^bneurotoxicity assessed by treating HT22 cells with various concentrations of compounds with or without 10 mM glutamate for 24 hrs. Cell viability was estimated by treating cells with MTS and measuring absorbance at 490 nM. PC₅₀, concentration producing 50% protection, values calculated using GraphPad Prism based on 12 point titrations, $n \ge 4$; TC₅₀, concentration producing 50% toxicity, values calculated using GraphPad Prism based on 7 point titrations, $n \ge 3$.

TABLE S3. In Vitro Neuroprotective Activity of chromone derivatives.

^aIn vitro neuroprotective activity and ^bneurotoxicity assessed by treating HT22 cells with various concentrations of compounds with or without 10 mM glutamate for 24 hrs. Cell viability was estimated by treating cells with MTS and measuring absorbance at 490 nM. PC₅₀, concentration producing 50% protection, values calculated using GraphPad Prism based on 12 point titrations, $n \ge 4$; TC₅₀, concentration producing 50% toxicity, values calculated using GraphPad Prism based on 7 point titrations, $n \ge 3$.

		Vehicle Control		<u>Compound</u>	<u>g; 3 wks i.p.)</u>	
Parameter	Units	1	2	1	2	3
ALP	U/L	90	79	72	80	60
ALT	U/L	35	32	34	28	33
AST	U/L	60	50	89	71	78
Total Bilirubin	mg/dL	0.20	0.20	0.20	0.20	0.20
Total Protein	g/dL	4.9	5.0	5.2	5.3	4.9
Albumin	mg/dL	2.9	2.8	3.0	3.2	2.8
Creatinine	mg/dL	0.23	0.15	0.16	0.23	0.18
BUN	mg/dL	18	17	19	19	20
Glucose	mg/dL	199	219	195	205	195

 TABLE S4. Mouse Blood Chemistry Results.

TABLE S5. Mo	use Complete	e Blood Count	Results.
--------------	--------------	---------------	----------

		<u>Vehicle Control</u>		Compound 2q (50 mg/kg; 3 wks i.p.)		
Parameter	Units	1	2	1	2	3
Leukocytes						
WBC	K/uL	7.00	10.58	9.28	8.82	6.62
NE	K/uL	1.56	4.38	5.55	3.03	3.78
LY	K/uL	4.78	4.50	3.30	5.14	2.45
MO	K/uL	0.64	1.51	0.32	0.43	0.35
EO	K/uL	0.02	0.13	0.10	0.17	0.01
BA	K/uL	0.01	0.07	0.01	0.05	0.02
Erythrocytes						
RBC	M/uL	9.70	4.44	9.39	9.46	9.37
Hb	g/dL	14.8	16.0	13.9	14.5	13.9
HCT	%	54.6	24.6	51.1	53.2	51.3
MCV	fl	56.3	55.4	54.4	56.2	54.8
MCH	pg	15.3	36.0	14.8	15.3	14.8
MCHC	g/dL	27.1	65.0	27.2	27.3	27.1
RDW	%	17.6	24.2	17.8	17.7	17.4
Thrombocytes						
PLT	K/uL	988	690	1139	946	1050
MPV	fl	4.6	4.8	4.5	4.6	4.4

Compound 2j H¹ NMR spectra

Compound 2j Mass Spectra

Compound 2j Analytical HPLC

Compound 2q H¹ NMR Spectra

Compound 2q Mass Spectra

Compound 2q Analytical HPLC

