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SI Materials and Methods
Strains and Cell Culture. Results reported in the main text were
derived from a kinesin-associated protein on the heterotrimeric
kinesin-2 complex (KAP)-green fluorescent protein (GFP) rescue
of the flagellar assembly mutant-3 (fla3) mutant, generously pro-
vided by Mary Porter (University of Minnesota, Minneapolis) (1).
A backcross to CC125 (Chlamydomonas Stock Center) showed no
strain-dependent effects and an lf4/KAP-GFP/fla3 strain was
produced by mating and PCR-based genotyping. The lf4 strain
used was allele lf4-V86, a generous gift from the Dieckmann lab-
oratory (University of Arizona, Tucson, AZ). The strain was ver-
ified by genomic PCR, and absences were found in the 5′ region
and throughout the coding region.
An intraflagellar transport IFT20-GFP rescue of the null IFT20

mutant was described in ref. 2. The IFT20 strain showed a similar
injection trend for injection magnitude vs. time preceding and
time following an injection as was seen with KAP-GFP (Fig. S2),
but the strain showed a less steep variation in injection rate as
a function of flagellar length because the increased intensity of
retrograde IFT trains makes background subtraction less precise.
Similar features to those of the KAP-GFP strain were observed for
bursting and periodicity in this strain (Fig. S2).
All strains were grown on Tris-acetate-phosphate (TAP) agar

plates and then transferred to M1 liquid media under continuous
light for 12–36 h before fixation or live cell imaging. Lithium
chloride (Sigma) was prepared in a 1-M stock in M1 media and
used at a 25-mM working concentration in M1. Cells were in-
cubated for 1 h in LiCl before imaging. Cycloheximide (Sigma)
was prepared as a 10 mg/mL stock in ethanol and diluted to a 10
μg/mL working concentration. Cells were incubated a minimum
of 10 min in cycloheximide before imaging. A 1:1,000 ethanol in
M1 media control showed no significant effect on IFT traffic by
methods in Fig. 3 (Student’s t test for distance from the control
trend line gave P > 0.25).

Fixation. Methanol fixation was performed as previously described
(3). In Fig. 4, cells were stained with primary anti-GFP and sec-
ondary anti-mouse, labeled with rhodamine. In Fig. S8, cells were
incubated with anti-GFP (unlabeled) and imaged in the FITC
channel for GFP with no secondary stain. Similar results in the
FITC channel were achieved by methanol fixation and overnight
incubation in 10% (vol/vol) block with no primary antibody.

Live Cell Deflagellation and Flagellar Regeneration. Cells were
deflagellated by passing log-phase culture through an insulin sy-
ringe (28 gauge, 1 cc) in M1 culture media. One-half milliliter of
culturewasfirst drawn rapidly into the syringe, causing cavitation of
the media. The culture was then forced rapidly from the syringe
back into a 1.5-mL Eppendorf tube. For long-zero experiments,
regeneration proceeded for 15 min in the Eppendorf tube before
fixation. For total internal reflection fluorescence (TIRF) mi-
croscopy, cells regenerated on the coverslip.

Live Cell Imaging. Live cell imaging was performed on a Nikon
te2000microscope with a 100× 1.49-NA TIRF oil lens and 488-nm
laser illumination through an optical fiber with a near-TIRF illu-
mination field. Emitted light from the sample was reflected to the
camera, using a 514-nm dichroic mirror and a 525-nm filter. Im-
ages were recorded at 29.7 frames per second on a Photometrics
QuantEM EMCCD camera with 157 nm per pixel. In a set of
experiments to control for effects of the illumination field, an
identical microscope setup with a Yokogawa C-22 spinning disk

was used. TIRF and spinning-disk confocal imaging gave similar
trends for the injection magnitude vs. the time intervals preceding
and following an injection, although we did not make a statistical
comparison because the two illumination fields produce different
injection intensities.
The TIRF field was calibrated for each imaging session by ad-

hering 100-nm orange fluorescent beads (Phosphorex) to a cover-
slip and then setting the TIRF angle to give a mean bead intensity
of 75% the maximum fluorescence intensity detected (minimum
45 beads per view frame). To accomplish this, we imaged the
beads over a range of 50 laser angles from below TIR (all light
reflected) to above TIR, where all of the light is transmitted. The
mean bead intensity was calculated at each angle, using custom
MATLAB software. Then, the mean bead intensity vs. laser angle
was plotted. The curve shows a characteristic increase up to a
maximum and subsequent sharp drop off in intensity as the laser
angle increases significantly above TIR. We found empirically
that by setting the angle to give a mean bead intensity of 75% the
maximum, we could exclude the cell bodies from the illumination
field while getting clear illumination of the entire flagellum.
Tokunaga et al. (4) describe the technique of near TIR illumi-
nation at length. This method produces roughly constant flagellar
background intensity over a range of flagellar lengths (Fig. S10E).
Cells were allowed to adhere their flagella to the coverglass and

then imaged at 29.7 frames per second. The KAP-GFP cells were
imaged under two slightly different microscope configurations
(RAM in the control computer was increased and the dichroic
mirror was replaced). The first set contains 168 control flagella,
18 cycloheximide-treated flagella, and 39 lithium chloride-treated
flagella, whereas the second set contains 50 control flagella and
29 lf4 flagella.
Because the replacement dichroic mirror produces a very slightly

higher signal-to-noise ratio, we made an equivalent adjustment
in the image-processing background removal and smoothing
parameters to allow direct overlay of the two control sets. We
compared the two control datasets by the methods in Fig. 3 and
found no significant difference—comparing the deviation from
the control trend line for injection rate vs. flagellar length, the
deviations are not significantly different by two-tailed t test (P =
0.66). The larger dataset was used for injection magnitude vs.
time preceding and following injection plots because more data
points are available. The second set was taken with increased
RAM. Therefore, this set has longer time series and, accordingly,
these results are presented for power spectrum analysis. However,
both sets gave equivalent spectra.

IFT Kymograph Analysis. Kymographs were made using hand traces
of the flagella in Nikon elements (v3.1) to delineate the initial
position of the flagellum. Kymographs were then converted to IFT
injection time series, using custom MATLAB software with the
algorithm (5) in Fig. 1, using the following specific parameters.We
found empirically that the background was best approximated as
a constant component plus a photobleaching component. The
constant background was estimated as the kymograph minimum
and subtracted from the time series (Fig. S10E). We then esti-
mated local background as the local time series minimum on a
1.5-s window and then normalized the time series to this local
background to account for photobleaching. This step locally de-
trends the time series and serves as a high-pass filter. The time
series were then smoothed using two iterations of a running me-
dian filter with a window width of 3 pixels followed by one iteration
with a running mean filter of window width 3 pixels.
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Injection times were determined automatically as the local
maxima in the time series.Theminimumsize injection thatwe scored
was determined by comparing time series maxima to kymograph
traces by eye to determine what intensity could reliably be scored as
an injection. From this comparison we set the threshold peak in-
tensity at 0.015 relative intensity units. Injection peak sizes were
then calculated as the area under the peak while the time series
intensity was greater than 0.68× the local peak maximum. Results
were not sensitive to changes in this parameter. Injection sizes
were then normalized to the minimum peak size and only in-
jections greater than 10× the minimum injection intensity were
counted in the analysis. This step served to remove small peaks in
the time series that were due to noise. These methods are described
in more detail in ref. 6. We validated the methods and parameter
choices by comparing with manual measurements of kymographs
that were previously analyzed (6).
We next asked how the observed signal-to-noise ratio affects

our analysis. The signal-to-noise ratio was calculated as the
square of the ratio of signal amplitude to noise amplitude. Signal
amplitude was calculated as the total signal amplitude from the
smoothed time series, and noise amplitude was calculated as the
total amplitude in the time series after subtracting the smoothed
signal amplitude.
For this analysis, we generated synthetic kymograph datasets,

using a model convolution approach (7) by resampling the in-
jection series from the real data, convolving the synthetic series by
the point-spread function of the microscope, and then adding
background and noise to the level measured empirically in the
background of real flagella. We then built synthetic datasets over
a range of signal-to-noise values representative of the real dataset
(Fig. S10). Over the range of measured signal-to-noise values, the
highest false positive rate was 6% and the lowest true positive rate
was 98%, with a maximum total error of 8%. At the mean signal-
to-noise ratio of the dataset, the true positive rate was 100% with
6% false positives. The algorithm tends to have a very high true
positive hit rate due in part to the median projection across the
kymographs (5).
Taking the median projection greatly reduces the degree to

whichnoiseobscures the true signal.Although thismethod is simple
and robust, it does limit the type of kymographs that can be input:
There must be a consistent IFT velocity for all trains over the entire
flagellum for the entire course of the time series. Therefore, we
manually selected time series where the IFT velocity was consistent
over the entire kymograph and where minimal background variation
was present. We note that the KAP-GFP strain used in this paper
produces very faint retrograde IFT traces. Closer inspection of the
kymographs and image denoising reveal that there is normal retro-
grade traffic. The traces are more readily apparent in the IFT20-
GFP and other GFP-tagged IFT strains, but the kymograph analysis
algorithms perform better on the KAP-GFP kymographs.
In termsof total injectedmaterial detected, thealgorithmdetects

98.4% of the actual input from synthetic data when realistic noise
is overlaid on the synthetic kymographs. However, on an injection-
by-injection basis, the accuracy is lower, and this inaccuracy
increases for larger-magnitude injections (Fig. S10D).
Missed observations by this analysis would appear as smaller-

magnitude injections for a longer time interval.Undoubtedly, some
false negatives occur, but themagnitude vs. preceding time interval
plot suggests these are rare (Fig. S7B).
For Table S1, tomeasure the amount of time the injector spends

in theopenvs. closed state, foreach time serieswecounted theopen
time as the time for each peak where the intensity remains above
68%of the peakmaximum. For bursts, we counted the entire burst
durationas open time.We counted the remainder of the time series
as closed time.The ratioof open-to-closed timewas then calculated
for each time series and compared with the injection rate for each
time series, using Pearson’s correlation coefficient (r = −0.12, P =
0.09, n = 218 flagella).

Relating Intensity Units to the Number of KAP Molecules per Injection
Event. As discussed above, the intensity values for the peaks in the
time series combine corrections in illumination set by fluorescent
bead standards to account for variations in laser power or other
aspects of microscopy and normalization of intensity across each
kymograph relative to the background intensity to account for
photobleaching during data collection. To relate these normalized
intensity units to the number of molecules of KAP-GFP in the
individual injection events, we compared our results with our pre-
viously published results, obtained by stepwise photobleaching
on fixed IFT trains (6), which showed that the distribution of
KAP-GFP numbers in IFT trains in full-length flagella had an
average value of 6 per train and showed a peak in the range of 4–6
KAP-GFP per train. Comparing that result to the distribution of
event sizes that we observe, in which the average size of an injection
event in full-length wild-type flagella is ∼200 (Fig. 3A), we find that
a single KAP-GFP corresponds to ∼33 normalized units.
As a test of this approximate relation between normalized units

and KAP-GFP number, we note that previous stepwise photo-
bleaching experiments showed that flagella in the range 0–2 μm
contained 16 KAP-GFP per train (6), which would correspond to
an expected injection size of ∼500 based on our proposed con-
version factor. We found that short flagella in this same range had
injection sizes with an average magnitude of 463, consistent with
the proposed conversion factor.

Burst Integration. Burst integration involves determining at what
time resolution the actual events in a time series are occurring. To
take the sandpile analogy, we could count individual grains in an
avalanche as events, or we could count events as all of the grains that
hit the scale within a certain threshold time interval (Fig. 2A). For
the sandpile, we want to count the avalanches as events, so we in-
tegrate grains to get a time series of avalanches. A technical prob-
lem occurs when the distribution of intervals between avalanches
overlaps with the distribution of intervals between individual grains
hitting the scale. This problem is common in ion channel time se-
ries, where channel-opening events of two different types overlap
in their distributions. An optimal solution, in terms of trade-off
between types of errors, is to find a cutoff interval threshold where
the events lost from each of the distributions are equal (8). In our
data, we determined the threshold time interval of 0.26 s by fitting
a sum of two lognormal distributions to the interval time histogram,
with the two distributions representing time intervals between bursts
(greater mean) and between injections (lower mean). The threshold
interval was then set where area in the tail of the within-burst dis-
tribution extending above the threshold was equal to the area in the
tail of the between-burst distribution extending below the threshold.
Injections occurring less than the threshold time apart after the
previous injection were then merged into the previous injection.
Some time series began or ended in the middle of a burst. These
time series were truncated to eliminate the partial bursts.

Power Spectrum Calculation. For power spectrum calculation, we
analyzed only time series that had a length of at least 50 s (n = 37
time series). For Fig. 1C and Fig. S2A the power spectrum of
background-corrected time series was calculated directly, using
Fourier-based methods in MATLAB. For Fig. S3, power and
significance were assessed using an adaptation of the algorithm of
Ahdesmaki et al. (9).
Because time series smoothing affects the high-frequency part

of the power spectrum and background correction affects low
frequency, we also calculated the power spectrum of the raw,
uncorrected time series (Fig. S11), which shows behavior more
typical of a power law.

Analysis of Long-Memory Behavior in IFT Using the Hurst Exponent
and the Autocorrelation Function. One hallmark feature seen in
many, although not necessary all, avalanche-like systems is long-
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memory behavior. By convention, a long-memory system is clas-
sified as such on the basis of time series analysis of the system
behavior. If the time series resembles a random walk, such that
changes in the system output are uncorrelated from one time in-
terval to the next, such a system would be considered a short-
memory system. If, in contrast, changes in the systemare correlated
with the state of the system at earlier time points, this would be
considered a long-memory system, and the farther back in time the
correlation extends, the longer the “memory” of the system.

Analysis of Long-Memory Behavior Using the Hurst Exponent. As
stated thus far, “long memory” is not precisely defined. The most
standard criterion for long memory, which captures the general
spirit of the foregoing conceptual definition, is based on the rate at
which the autocorrelation decays over time. If the autocorrelation
decays more slowly than a one-dimensional random walk (i.e.,
Brownian motion), the system is classified as long memory. Al-
though this criterion is expressed in terms of the autocorrelation, to
deal with finite record lengths and other pragmatic issues, a more
robust estimator known as the Hurst exponent is usually used to
test for long-memory behavior. The Hurst exponent is calculated
from the time series data (10) and yields a value between 0 and 1. A
Hurst exponent of 0.5 indicates a random walk, whereas Hurst
exponents greater than 0.5 indicate long-memory behavior. Hurst
exponent analysis has been used to demonstrate long-memory
behavior in river flows (11), confined plasmas (12, 13), solar activity
(14), atmospheric ozone levels (15), and heart-beat fluctuations
(16), as well as energy prices (17) and stock market activity (18, 19).
Given the preexisting track record for using this criterion in studies
of long-memory behavior in such widely varying fields, we used this
criterion to assess long memory in IFT time series.
To calculate the Hurst exponent, we considered the time

intervals between adjacent injections by converting each injection
series into a time series of the time intervals between events. For
example, [1.1, 0.9, 1.0, 0.4, 1.2, 0.5] would be a time series of the six
intervals between seven injections in the original time series. In this
way, we do not consider the event duration in the analysis. To
calculate the Hurst exponent (10), we cover the time series with
a series of sliding windows of increasing time span τ, and then
within each window we generate a mean adjusted series Y from
all points in the series within the window, Yi =Xt+i − hXi for
all times in the window under consideration starting at time t up
to t + τ. Next, we calculated the cumulative deviate series
Zj =

Pj
i= 1 Yi for all times j up to the size τ of the window. We

then calculated the range R within each window according to
R=maxðZ1;Z2; :::;ZτÞ−minðZ1;Z2; :::;ZτÞ. Next, we computed
the SD S of the data points X within each such window. The range
R and SD S were then averaged over all windows of duration τ to
yield the average range and deviation, Rτ and Sτ, for a given time
lag t. The rescaled range as a function of time lag is then given by
Rτ=Sτ

. Finally, we estimated the exponent of the power law fit for
the rescaled range as a function of τ. Only time series with more
than 10 injections were considered. In the main text we report the
Hurst exponent for the time intervals between injections because
this value tells us about correlations in injection timing. However,
for completeness, we also calculated the exponent for event sizes
(mean = 0.64, SEM = 0.031). The value matches with that of the
time intervals, which makes intuitive sense because we observe
a correlation between injection sizes and time intervals.

Analysis of Long-Memory Behavior Using the Autocorrelation Function.
The Hurst exponent thus provides a measure of long-memory
behavior without the need to specify a particular timescale of
interest. However, in IFT, the time between injections provides
a natural timescale that we can use to define what we mean by
“long”: If correlations between injections exist on a timescale that
is significantly longer than the average time between injection

events, we can consider such a correlation to be extending over
a timescale that is long. This type of analysis has been used, for
example, to demonstrate long-memory behavior in human brain
activity (20). To apply this method to our data, we analyzed the
autocorrelation function of the locally background-subtracted
time series data and found that the autocorrelation decays as
a double exponential with decay constants of −1.7 s−1 for the fast
component and −0.0060 s−1 for the slow component. The slow
component corresponds to a correlation time of 170 s and ap-
pears as a long tail in the autocorrelation. By comparison, the
average injection frequencies vary between 0.87 and 1.4 Hz,
which corresponds to mean times between events in the range
0.71–1.2 s. The autocorrelation in the IFT time series thus ex-
tends two orders of magnitude beyond the timescale defined by
the average time between injections, thus supporting the idea that
IFT is a long-memory process in this latter sense.

Fixed Cell Imaging and Analysis. Fixed cell imaging. Fixed samples
were imaged on a Deltavision microscope at 100× with filters for
FITC and Rhodamine channels. Z-stacks were acquired with
a 0.2-μm z-step. Deconvolution was performed using Deltavision
software and z-stacks were made for further analysis.
Injector intensity quantification. Custom software was written in
MATLAB. Manual segmentation was used to identify cells and
IFT injector regions. For each cell, background was subtracted
from the z-stack as the mean intensity of the pixels in the 3D
bounding box perimeter, and then pixels with intensity greater
than one-eighth the maximum intensity were summed to give
injector intensity. The one-eighth cutoff was chosen because it
consistently produced a good visual overlap with the injector
region. Varying the cutoff parameter did not change the overall
results. We note that deconvolution is often necessary to distinguish
paired basal bodies by epifluorescence.
Intensity ratios in the control, single-cell, and multiple-cell

comparison samples (Fig. 4 and Fig. S8) were compared by one-
way ANOVA and then multiple pairwise comparisons were made
using Bonferroni’s correction for α.

Computational Models. Detailed methods with equations are in the
Figs. S4 and S6 legends. A one-dimensional agent-based traffic
model was formulated on the basis of the molecular motor-based
transport model presented in Chowdury et al. (21). Briefly, a linear
track of 500 motor-binding positions was established. Motors are
then selected at random to step forward one position along the
track. Motors that reach the end of the track then enter a pool of
motors that can enter the track at position 1. A motor moves only
if the position in front of it is unoccupied. Jams develop randomly
and jam magnitude is taken to be the number of contiguous mo-
tors in a jam after 100,000 time steps.
A one-dimensional Burridge–Knopoff spring-block model for

earthquakes (22), formulated on the basis of the Huang and
Turcotte (23) three-spring model, was produced with simplified
dynamics that would apply at low Reynolds number. Briefly, at
each time step, the driving block moves forward by a set amount.
The two sliding blocks are coupled to each other and to the driving
block by springs. The sliding blocks experience friction with a
uniform probability proportional to the length of their surface in
contact with the floor. When the spring force exceeds the static
frictional force constant on a sliding block, the block moves on
the basis of the ratio of forces until the force drops below the
sliding friction force constant. The output is the magnitude of
the movements of one of the sliding blocks over time. The dynamics
are similar to those of the original model when the loading rate
is set in the higher range relative to the frictional component.

Statistics.All statistical testswereperformed inMATLAB,using the
Statistical Analysis Toolbox except where indicated. All correlation
values given are the standard Pearson product-moment correlation
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coefficient (r). P values for correlation are for the test of whether
the correlation is nonzero, where P = 0 gives 100% certainty of
a nonzero correlation.

SI Appendix
Model for IFT Accumulation Based on Ras-related nuclear protein
guanosine 5’-triphosphate Gradient-Mediated Length Sensing. Our
data show that IFT proteins accumulate at the basal body as a
function of flagella length. However, our data do not directly indi-
cate the mechanism by which length may alter IFT accumulation.
Dishinger et al. (24) showed that a gradient of Ras-related nuclear
protein (Ran) guanosine 5’-triphosphate (GTP) between the ciliary
and cytoplasmic compartments regulates entry of proteins into the
cilium. We therefore asked whether the RanGTP gradient is, at
least in theory, length dependent and thus could account for the
length dependence of IFT recruitment that we have observed.

Assumptions.

i) We assume that the concentration gradient of RanGTP
between the flagellum and the cytoplasm regulates recruit-
ment of IFT particles to distal appendage fibers of the basal
body [proposed to be the flagellar equivalent of the nuclear
pore by Deane et al. (25)]. Under this assumption, the ac-
cumulation of IFT proteins at the flagellar base is equiva-
lent to the transient accumulation of nuclear cargos at the
nuclear pore that have been revealed by photobleaching
and single-molecule studies (26, 27).

ii) RanGTP is produced at a constant rate within the flagellum,
due to a constant activity of RanGEF (e.g., a constant number
of RanGEF molecules) and a saturating amount of RanGDP
that is independent of flagellar length. Because we assume
that RanGDP is present in excess, it can be considered a
constant and we do not directly model it.

iii) The gradient of RanGTP across the flagellar pore reaches
steady state at a timescale that is fast relative to the time-
scale over which flagellar length changes.

iv) The flagellar compartment is well mixed, such that no spatial
gradient exists within it. Assumptions iii and iv together
allow us to use steady-state assumptions for the flagellar con-
centration of RanGTP at any given length.

v) RanGTP hydrolyzes to RanGDP at a constant rate according to
first-order kinetics, with no effect of length on the hydrolysis rate.

vi) The concentration of RanGTP in the cytoplasm is always
very small compared with the flagellar concentration.

vii) RanGTP escapes the flagellar compartment according to
Fick’s first law, J = −D ∂ϕ

∂x , where J is the diffusive flux, ϕ
is the concentration, and x is pore length. We assume that ∂ϕ

∂x
is approximately equal to the flagellar RanGTP concentra-
tion divided by the pore length on the basis of assumption vi
that the cytoplasmic RanGTP concentration is negligible.
The total rate of diffusive loss of RanGTP from the flagel-
lum is the flux, J, times the cross-sectional area, a.

viii) The flagellum is cylindrical, so volume is equal to length, L,
times the cross-sectional area.

With these assumptions in mind, we describe the rate of change
in the number of molecules of RanGTP within the flagellum as

dN
dt

= kprod − kcatN −
kescN
L

; [S1]

where N is the total number of molecules of RanGTP inside the
flagellar compartment, kprod is the rate at which new RanGTP is

produced per unit time, kcat is the hydrolysis rate for RanGTP
to RanGDP (inverse of the half life), L is the length of the
flagellum, and kesc is a proportionality constant that takes into
account the diffusion constant and the length of the flagellar
pore (kesc =D=l, where D is the diffusion constant and l is the
pore length).
The key point of this equation is that any given RanGTP that

is produced can undergo only one of two mutually exclusive
fates: either it makes it to the pore and leaks out or it undergoes
nucleotide hydrolysis (Fig. 4).
We solve Eq. S1 for the steady-state solution to obtain

N* =
kprod

kcat +
kesc
L

[S2]

or

N* =
kprodL

kcatL+ kesc
: [S3]

Examination of this equation shows that the number of RanGTP
molecules reaches a limit as the length increases. However, the
concentration of RanGTP in the flagellar compartment, and thus
the flux out of the compartment, is proportional to N*

L , and thus
we see that the concentration decreases as the flagellar compart-
ment grows in size:

½RanGTP�= kprod
kcatL+ kesc

: [S4]

We thus conclude that the concentration of RanGTP at the
flagellar pore is inherently length dependent, and if the concen-
tration of RanGTP controls the level of IFT recruitment as pro-
posed by Dishinger et al., then IFT recruitment and injection
should be inherently length dependent. The origin of this length
dependence is fundamentally very simple: The probability that
a molecule of RanGTP reaches the pore before it hydrolyzes
becomes smaller as the flagellum becomes longer. Because
RanGTP itself in the cytoplasm could inhibit Importin-mediated
accumulation of IFT material at the flagellar pore, we suggest
that the length dependence of such a signal would have to be me-
diated through another protein, such as one of the known flagel-
lar length mutants. However, a recent study suggests that the
effect could be direct (28).
All of the parameters in the model either have been published

or can be estimated. Therefore, we examined how the model
behaves with published parameter values (29, 30) to determine
whether the behavior is realistic (Fig. 4). We estimate the pore
length to be 0.2 μm on the basis of electron microscopy data.
We also varied the parameters within the published ranges
to determine which parameters the model is most sensitive to
(Fig. S12).
As noted, increasing the production rate increases the con-

centration of RanGTP at any given length, whereas increasing
either the decay rate or the diffusion constant decreases the
RanGTP concentration. The effects of increased diffusion rate
are most pronounced at low lengths.
Finally, we note that this general model for organelle size

sensing by diffusion of a metastable reporter molecule could be
extended to any organelle that forms a closed compartment.

1. Mueller J, Perrone CA, Bower R, Cole DG, Porter ME (2005) The FLA3 KAP subunit is
required for localization of kinesin-2 to the site of flagellar assembly and processive
anterograde intraflagellar transport. Mol Biol Cell 16(3):1341–1354.

2. Lechtreck K-F, et al. (2009) The Chlamydomonas reinhardtii BBSome is an IFT cargo
required for export of specific signaling proteins from flagella. J Cell Biol 187(7):
1117–1132.

Ludington et al. www.pnas.org/cgi/content/short/1217354110 4 of 16

www.pnas.org/cgi/content/short/1217354110


3. Feldman JL, Marshall WF (2009) ASQ2 encodes a TBCC-like protein required for mother-
daughter centriole linkage and mitotic spindle orientation. Curr Biol 19(14):1238–1243.

4. Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination
enables clear single-molecule imaging in cells. Nat Methods 5(2):159–161.

5. Ludington W, Marshall W (2009) Automated analysis of intracellular motion using
kymographs in 1, 2, and 3 dimensions. Proc SPIE 7184:71840Y–71840Y-9.

6. Engel BD, Ludington WB, Marshall WF (2009) Intraflagellar transport particle size
scales inversely with flagellar length: Revisiting the balance-point length control
model. J Cell Biol 187(1):81–89.

7. Gardner MK, Odde DJ, Bloom K (2007) Hypothesis testing via integrated computer
modeling and digital fluorescence microscopy. Methods 41(2):232–237.

8. Magleby KL, Pallotta BS (1983) Burst kinetics of single calcium-activated potassium
channels in cultured rat muscle. J Physiol 344:605–623.

9. Ahdesmaki M, Lahdesmaki H, Yli-Harja O (2007) Robust Fisher’s test for periodicity
detection in noisy biological time series. Genomic Signal Processing and Statistics,
2007. GENSIPS 2007. IEEE International Workshop on (Tuusula, Finland), pp 1–4.

10. Hurst HE (1957) A suggested statistical model of some time series which occur in
nature. Nature 180:494 (lett).

11. Mandelbrot BB, Wallis JR (1969) Global dependence in geophysical records. Water
Resour Res 5(2):321–340.

12. Politzer PA (2000) Observation of avalanchelike phenomena in a magnetically
confined plasma. Phys Rev Lett 84(6):1192–1195.

13. Mier J, Garcia L, Sanchez R (2006) Study of the interaction between diffusive and
avalanche-like transport in near-critical dissipative-trapped-electron-mode turbulence.
Phys Plasmas 13(102308):1–10.

14. Ruzmaikin A, Feynman J, Robinson P (1994) Long-term persistence of solar activity.
Sol Phys 149:395–403.

15. Varotsos C, Kirk-Davidoff D (2006) Long-memory processes in ozone and temperature
variations at the region 60°S-60°N. Atmos Chem Phys 6:4093–4100.

16. Suki B, et al. (2003) Fluctuations, noise and scaling in the cardio-pulmonary system.
Fluctuation Noise Lett 3:R1–R25.

17. Serletis A, Rosenberg A (2007) The Hurst exponent in energy futures prices. Physica
A: Stat Mech Appl 380:325–332.

18. Willinger W, Taqqu M, Teverovsky V (1999) Stock market prices and long-range
dependence. Finance Stoch 3(1):1–13.

19. Lillo F, Farmer J (2004) The long memory of the efficient market. Stud Nonlinear Dyn
E 8(3):1–19.

20. Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi RJ (2001) Long-range
temporal correlations and scaling behavior in human brain oscillations. J Neurosci
21(4):1370–1377.

21. Chowdhury D, Schadschneider A, Nishinari K (2005) Physics of transport and traffic
phenomena in biology: From molecular motors and cells to organisms. Phys Life Rev
2:318–352.

22. Burridge R, Knopoff L (1967) Model and theoretical seismicity. Bull Seismol Soc Am
57(3):341–371.

23. Huang J, Turcotte D (1990) Evidence for chaotic fault interactions in the seismicity of
the San Andreas fault and Nankai trough. Nature 348:234–236.

24. Dishinger JF, et al. (2010) Ciliary entry of the kinesin-2 motor KIF17 is regulated by
importin-beta2 and RanGTP. Nat Cell Biol 12(7):703–710.

25. Deane JA, Cole DG, Seeley ES, Diener DR, Rosenbaum JL (2001) Localization of
intraflagellar transport protein IFT52 identifies basal body transitional fibers as the
docking site for IFT particles. Curr Biol 11(20):1586–1590.

26. Kubitscheck U, et al. (2005) Nuclear transport of single molecules: Dwell times at the
nuclear pore complex. J Cell Biol 168(2):233–243.

27. Lowe AR, et al. (2010) Selectivity mechanism of the nuclear pore complex
characterized by single cargo tracking. Nature 467(7315):600–603.

28. Fan S, et al. (2011) Induction of Ran GTP drives ciliogenesis. Mol Biol Cell 22(23):
4539–4548.

29. Klebe C, Prinz H, Wittinghofer A, Goody RS (1995) The kinetic mechanism of Ran—
nucleotide exchange catalyzed by RCC1. Biochemistry 34(39):12543–12552.

30. Becskei A, Mattaj IW (2003) The strategy for coupling the RanGTP gradient to nuclear
protein export. Proc Natl Acad Sci USA 100(4):1717–1722.

1. Rieker F, Warland D, de Ruyter van Steveninck R, Bialek W (1997) Spikes: Exploring the Neural Code (MIT Press, Cambridge, MA).

10
-1

10
0

10
1

10
-1

10
0

window width (seconds)

F
an

o 
fa

ct
or

original time series

bootstrap resamples 
of the original time series

Fig. S1. Analysis of bursting in IFT. The Fano factor (i.e., variance in event number divided by mean event number) for a sample injection series (thick solid
line) shows an initial decrease with increasing window size, followed by an increase in longer time windows. For each time series (n = 40, KAP-GFP, fla3− strain
time series), time series data were converted to an event series and the number of events occurring within a sliding window was calculated. The ratio of the
variance in number of events per window to the average number of events was used to calculate the Fano factor. Ten bootstrap resamples of the actual
injection series (shaded dashed lines) were compared with the actual series (thick solid line). An example case is shown. Because a Poisson process has variance
equal to the mean, deviation of the Fano factor from 1 indicates that the injections do not occur as a Poisson process, showing that sequential events in
the injection series are not independent, such that the occurrence of one event influences the timing of the next event. This analysis is based on methods
used to analyze neuronal spike trains; see, for example, ref. 1. Decreasing Fano factor with increasing window size indicates that the events are occurring with
more regularity than predicted for a Poisson process and are consistent with the presence of a distinct peak in the distribution of interevent times (Fig. S9).
Increase in Fano factor for largest-size windows is consistent with bursting.
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Fig. S2. IFT20-GFP rescue of ΔIFT20 shows the same injection behavior as GFP-tagged kinesin II. (A) The power spectrum was calculated by methods used in Fig.
1C. The behavior is similar to behavior seen in the kinesin II time series although false positive traces increase the apparent frequency. (B) The event magnitude
increases with longer time interval since the previous event (r = 0.24; P = 0; n = 1,367 events). (C) The event magnitude is also correlated with the time interval
until the next event (r = 0.25; P = 0; n = 1,297). (D) IFT20 accumulates in greater quantities at the base of regenerating flagella (“R”) than at the base of steady-
state length flagella (“S”). Intensity is represented from highest (dark red) to lowest (dark blue). (E) Quantified intensity ratio of S:R for five cells with unequal-
length flagella and eight cells with equal-length flagella. Error bars show SEM.
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less sensitive to outliers than the standard Fisher’s G-test. Note that every time series analyzed (n = 218) had significant periodicity at 1 Hz for at least 71.5% of
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the time but that the dominant frequency drifts over the course of the time series. (D) For contrast, we compare these results with uniform white noise. (E) By
the same analysis, the white noise time series shows short windows of periodicity, but no drift around a dominant frequency. Instead, short spurts of periodic
behavior randomly occur but are not correlated with one another. (F) Because we examine the series on a rolling window, periodic events in one window tend
to be observed over multiple adjacent windows, producing significant periodicities at the same frequency for several adjacent windows.

1. Ahdesmaki M, Lahdesmaki H, Yli-Harja O (2007) Robust Fisher’s test for periodicity detection in noisy biological time series. Genomic Signal Processing and Statistics, 2007. GENSIPS
2007. IEEE International Workshop on (Tuusula, Finland), pp 1–4.
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Fig. S4. Comparison of avalanche and traffic-jam models that reproduce relaxation oscillators. Computational models that allow storage of potential energy
show better concordance with the data when we vary the system parameters. (A) In the sandpile avalanche model (1), the power spectrum of energy dissi-
pation, Et, the number of sand grain movements in a time step, shows some periodicity at low pile width (L, Inset) and begins to show 1/f noise in a limited
frequency range (10−3–10−1 Hz) due to overlapping avalanches for large system sizes (solid line above the power spectra indicates slope 1/f) (1). We used the
exact equations and parameters used by Hwa and Kardar (1) with L varied as indicated. Power spectra are not offset. For reader reference, the height of sand in
the system, H, at a given position, n, at time, t, updates at each time step according to the equations

Hðn; t + 1Þ=Hðn; tÞ−Nf

Hðn±1; t + 1Þ=Hðn± 1; tÞ+Nf

Legend continued on following page

Ludington et al. www.pnas.org/cgi/content/short/1217354110 9 of 16

www.pnas.org/cgi/content/short/1217354110


if and only if

Hðn; tÞ−Hðn± 1; tÞ>Δ:

Our simulations used Nf = 2 and Δ= 8. One sand grain is added to a randomly chosen position every 10 time steps rather than waiting for the system to
equilibrate before adding another grain. Readers should refer to Hwa and Kardar (1) for a very clear explanation of the model, parameter choices, and
implications. We waited until the model became stationary before recording the output. (B) Event magnitudes for the sandpile model correlate with both the
time interval preceding a release and the time interval following release for both large and small pile widths. (C) A simplified version of the Burridge–Knopoff
spring-block model (1, 2) (diagram) shows a broad peak, resembling experimental measures of sandpile data (3), and is similar to the kinesin II and IFT20
datasets for small masses. However, the system becomes highly periodic when larger masses (m, Inset) are used. Power spectra are calculated for the movement
of the forward block and are offset on the power axis so that they can be distinguished. The block positions, X1 and X2, at time t, update according to the
equations

Xiðt þ 1Þ=XiðtÞ þ
Ftop spring þ Fside spring

Ffriction
;

where

Fspring = − kspringΔx

Ffriction = kfrictionm
rand − 0:5

8

kfriction =
�
ksliding moving
kstatic stationary:

We use friction proportional to mass because we assume a constant density; thus more massive blocks are longer and have more frictional contacts. The
number of frictional contacts is proportional to the block length with up to one-eighth of the friction determined randomly from a uniform distribution. For the
simulations shown, ksliding = 2, kstatic = 2.1, and kspring = 0.005, and the overhead block is driven at 0.5 distance units per time step. m, the mass of the sliding
blocks, was varied as indicated. (D) Event magnitudes for the sliding-block model correlate with both the time intervals preceding and those following events
regardless of system size. Larger masses have both longer time intervals and larger-magnitude events. (E) A traffic-jam model (4) (see Inset diagram but note
that the track length is 500 bins in the actual computational implementation of this model) shows white noise at low frequency and power law decay (α =
−1.78) at higher frequencies regardless of the motor density on the track. Although there is some qualitative concordance with the injection data, the real data
show white noise, some periodicity, and a roll off (nonpower law), whereas the traffic model is dominated by the power law decay. Power spectra were offset
so that they can be distinguished. To represent movement of motors along the track, the position, P, of the ith motor at time t updates according to the
equation Pði; t + 1Þ= Pði; tÞ+ 1 if the motor is on the track with a free space in front of it. If the space in front is blocked by another motor, then the position of
the motor does not change. Update of motor positions is asynchronous with motors being selected at random and updated individually. If the selected motor
at time t is at the final track position, it is removed from the track and recycled to the pool of motors awaiting entry onto the track. If the selected motor is in
the pool of motors awaiting entry onto the track, then the position of the motor is set to 1 with a fixed probability set by the parameter load_probability. The
power spectrum was taken for the flow, J, of motors exiting the track per unit time, recorded after this flow had become stationary. (F) The traffic model shows
a slight negative correlation between the time interval preceding an event and the event size. Event size does not correlate with the time intervals following
events. These trends, which are clearly divergent from the trends seen in the sandpile model (Fig. S4B) and in experimental IFT data (Fig. S6B), hold regardless
of the motor density on the track. All simulations were recorded for 1,000,000 time steps. Irrelevant, low-frequency regions of the power spectra were cropped
out. (G) Typical kymograph of traffic model shows formation of jams. Each color trace represents one motor as it travels across the track and is recycled to
position zero. Jams occur when motors impede each other’s movement due to motor density on the track and are indicated by horizontal stretches of the
traces for several motors occurring in parallel.

1. Hwa T, Kardar M (1992) Avalanches, hydrodynamics, and discharge events in models of sandpiles. Phys Rev A 45(10):7002–7023.
2. Huang J, Turcotte D (1990) Evidence for chaotic fault interactions in the seismicity of the San Andreas fault and Nankai trough. Nature 348:234–236.
3. Jaeger HM, Liu Ch, Nagel SR (1989) Relaxation at the angle of repose. Phys Rev Lett 62(1):40–43.
4. Chowdhury D, Schadschneider A, Nishinari K (2005) Physics of transport and traffic phenomena in biology: From molecular motors and cells to organisms. Phys Life Rev 2:318–352.
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Fig. S5. Diagrammatic model of the known components of the flagellar IFT train injection apparatus. Intraflagellar transport trains localize to the basal body
and accumulate at the flagellar pore, at the distal end of the basal body. The IFT trains drive past one another in the transition fibers and matrix proteins,
which additionally filter out proteins that are not licensed for entry. A computational model based on this diagram is presented in Fig. S6 C and D.
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Fig. S6. Computational model of the IFT injector shows concordance with the empirical data. Time series data from KAP-GFP fla3− strain cultures undergoing
flagellar regeneration were sorted according to flagellar length (regenerating <7 μm, n = 24, mean = 5.2 μm, SEM = 0.15 μm vs. steady state >12 μm, n = 41,
mean = 13.3 μm, SEM = 0.18 μm). (A) Power spectra were calculated by first correcting the time series for photobleaching and then making the time series
stationary (i.e., subtracting the mean). The mean squared amplitude at each frequency was then calculated using standard Fourier-based methods in MATLAB.
These power spectra differ slightly from the one presented in Fig. 1C because local detrending was used in Fig. 1C, whereas, for consistency with Hwa and
Kardar (1), it was not used in calculating the power spectrum in Fig. S4 A, C, and E nor was it used in the power spectra presented here. A minimum time series
length of 8 s was used and time series longer than 8 s were cropped to 8 s. We note that at higher frequencies, smoothing of data and the shape of the
injection peaks start to influence the power spectrum, potentially explaining differences between model and data at frequencies greater than 1 Hz. (B) Local
detrending was used to calculate injection sizes and time intervals between injections here, in Fig. 2 A and B and in Fig. S4 B, D, and F. Hwa and Kardar (1)
noted the difficulty in computationally distinguishing overlapping avalanches, and we apply the strategy of local detrending because it allows us to compare
trends in individual events with the previous work done on IFT injections (2, 3). (C) Model of avalanching in the IFT injection system. Whereas the sandpile
model in Fig. S4 A and B showed clear similarities to the experimentally obtained behavior, it was not obvious how the elements of that model related to actual
components of the IFT system. To directly model the known components of the IFT injection system, we built a computational model of IFT injections, as
diagrammed in Fig. S5. We model the movements of IFT particles through the transition zone of the basal body as follows: We represent the IFT docking sites
on the distal region of the basal body by an annular lattice with nine parallel arrays of binding sites and a fixed length LB (set to 7 in our simulation based on
approximate lengths of IFT trains and the length of the transition zone by electron microscopy), with the number of IFT particles at each lattice site given by an
integer T(i, j, t), where 1 ≤ i ≤ 9 and 1 ≤ j ≤ LB. The lattice of binding sites has a lateral periodic boundary condition, a closed (proximal) end, and an open (distal)
end. Bound particles move in a directed fashion from the basal body into the flagellum driven by molecular motor forces, which are opposed by the presence
of other particles blocking their path. IFT train movement occurs when any of the following conditions are met:

Tði; j; tÞ− Tði; j+ 1; tÞ> k

jTði; j; tÞ− Tði+ 1; j; tÞj> k:

These conditions indicate that IFT trains can shift position in either a distal-directed or a lateral direction, but cannot move in a proximal direction due to the
directionality of kinesin motors. Here k is a constant reflecting the ability of bound IFT particles to impede the movement of additional IFT particles into a given
binding region. When any of these conditions are met, a constant number Nm move into the grid space, either distal or lateral, with the array T updated
accordingly. Movements occur laterally and distally but not proximally. New IFT particles bind the flagellar base in random positions on the lattice at a rate of B
(L) particles per time step, where L is the flagellar length (Fig. 4D). We note that in our simulation, we do not model flagellar length dynamics and so B is
a constant that we can increase or decrease to represent changes in basal body accumulation rates for short vs. long flagella. IFT particles docked on the
flagellar base enter the flagellum by exiting the transition zone area, which is represented as an additional row of lattice points at the distal end; i.e., j= LB + 1.
Any IFT particles entering this last row of lattice points are then removed from the simulation at each time step and summed to yield the flux of injected
material flowing into the flagellum at that time step:

JoðtÞ=
X9
i = 1

Tði; LB þ 1; tÞÞ:

For the simulation results presented, we used the parameter values

Legend continued on following page
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k= 8
Nm = 2

and B = 3 for full-length flagella (blue curve) and B = 5 for short regenerating flagella (red curve). (C) The power spectrum of this flux for two simulations of
1 million time steps each. The blue curve shows a simulation with three trains added per time step, and the red curve shows a system with five trains added per
time step, corresponding to the fold difference in flux measured empirically in the IFT system between full-length and short flagella. The general trends of the
power spectra match what we measured (A). (D) The relationships between event magnitudes and interarrival times for the simulations in C. These simulation
results show the same qualitative trends as the data presented in B, including a larger average injection size for regenerating flagella compared with steady-
state flagella. In addition, the Hurst exponent for the model prediction was calculated to be 0.7, which is comparable to the experimentally measured value of
0.6. The ratio of total particles in the small grid vs. the large grid was 0.69 at the end of the simulation, which agrees with our experimental data from Fig. 4B.

1. Hwa T, Kardar M (1992) Avalanches, hydrodynamics, and discharge events in models of sandpiles. Phys Rev A 45(10):7002–7023.
2. Engel BD, Ludington WB, Marshall WF (2009) Intraflagellar transport particle size scales inversely with flagellar length: Revisiting the balance-point length control model. J Cell Biol

187(1):81–89.
3. Dentler W (2005) Intraflagellar transport (IFT) during assembly and disassembly of Chlamydomonas flagella. J Cell Biol 170(4):649–659.
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Fig. S7. Injection behavior is length dependent. (A) The median injection event size and median time interval between injection events were calculated for
168 flagella (KAP-GFP, fla3− strain). Longer flagella tend to make smaller injections, and they tend to make injections more frequently. Likewise, shorter
flagella tend to make larger injections, and they tend to make injections less frequently. Note the correlation between injection size and injection time in-
terval. Even though short flagella tend to have large median injection sizes, when a short flagellum (red circles) has a smaller median injection size, it also has
a shorter median time interval between injections. And to the same point, whereas longer flagella (blue circles) tend to have smaller injections, when a long
flagellum does have large injections, these injections occur less frequently (i.e., with a longer median time interval between injections). (B) The median trends
of event magnitude and the timing of events are also apparent when observing individual injection events. Longer time intervals preceding an injection tend
to lead to larger injections. (C) The same is true for the time intervals following an injection: Larger injections tend to be followed by a longer time before the
next injection occurs, although this trend is less strong than for the time interval preceding the injection. All of the data presented are for time series where
burst integration was not performed (SI Materials and Methods). The effects of burst integration are minor. Flagellar lengths are color coded with blue for long
and red for short (see color scale).
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Fig. S8. More IFT material accumulates at the base of faster-growing flagella. (A) The accumulated load of kinesin-II (KAP-GFP, fla3− strain; KAP-GFP fluo-
rescence) is greater at the base of the shorter flagellum in single cells with unequal-length flagella. (Inset) The difference in accumulation where groups have
been divided on the basis of a length ratio of 0.8. (B) The accumulated load of IFT20 (IFT20-GFP, ΔIFT20 strain; IFT20-GFP fluorescence) is greater at the base of
the shorter flagellum in single cells with unequal-length flagella. (Inset) The difference in accumulation where groups have been divided on the basis of
a length ratio of 0.8. Red lines are robust linear fits from MATLAB.
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Fig. S9. Distributions of interarrival intervals for non–burst-integrated injection events (KAP-GFP, fla3− strain). The distribution of time intervals between
adjacent injections (solid line) fits well with a lognormal distribution (dashed line). It is a much narrower distribution than the injection magnitude distribution
(Fig. 1D), which is dominated by its tail, whereas the intervals distribution is dominated by its center.
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Fig. S10. Kymograph processing algorithm performance evaluated using model convolution. (A and B) We made synthetic kymographs, varying the signal-
to-noise ratio from 1.4 × 10−6 to 156, and then evaluated the ratio of (A) true positive and (B) false positive calls, as a function of the signal-to-noise ratio. The
algorithm functions well above a signal-to-noise ratio of 0.1. We estimate the actual signal-to-noise ratio to be 2.5 (red arrows). On the basis of these per-
formance tests, we should see 5% false positives and 100% true positives. We calculate the false positive ratio as the number of wrong calls divided by the total
number of calls. The true positive ratio is the number of correct calls divided by the number of possible correct calls. (C) To evaluate the time resolution, we
evaluated the algorithm performance over varying input frequencies to determine how close together injections can be before they are merged into a single
event by the algorithm. Synthetic kymographs were made with doublet injections 1 s apart. The spacing between the peaks in a doublet was varied from 0.03 s
to 1 s. The algorithm performs well for intervals 0.25 s and above, whereas shorter intervals cause the adjacent injections to be merged into a single event. (D)
We also calculated the SE in estimating injection size as a function of the signal-to-noise ratio. As injections get larger, the error in estimating their absolute
size increases as the signal-to-noise ratio to the 1/2 power. (E) The background intensity (KAP-GFP, fla3− strain) is roughly constant as a function of flagellar
length (r = −0.09, P > 0.24, n = 168 flagella).
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Fig. S11. Power spectra of raw time series show power law behavior. (A and B) We calculated the power spectra for raw time series of KAP-GFP injections (A)
and IFT20-GFP injections (B). The power spectra appear to have roughly power law behavior with a slope of α ∼ 2.6.

Fig. S12. Sensitivity of RanGTP gradient model for length sensitivity to variation of model parameters. The model in SI Appendix was used to predict variation
of RanGTP concentration at the flagellar pore as parameters describing production, degradation, and diffusion of RanGTP were varied over a range based on
estimated parameters from existing literature.
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Table S1. Several alternative biochemical models do not explain our results

Model Hypothesis Data in support Data against

a) Entry-gated pore Pore opens when more
material is needed
(frequency-modulated control).

— i) The injection rate is
uncorrelated with the amount
of time that material is entering
the flagellum.

b) Checkpoint Larger trains take longer
to enter because more cargo
must be checked.

i) Injection magnitude is
correlated with the length
of the time interval preceding
the injection.

i) Injection magnitude is correlated
with the length of the time interval
following the injection.

ii) Bursting is not explained.
iii) Periodicity is not explained.

c) Constant accumulation
rate and random
release timing

Material accumulates at the
entry point at a constant rate.
The gate opens at random time
intervals and lets all of the
accumulated material in.

i) Injection magnitude
is correlated with the
length of the time interval
preceding the injection.

i) Injection magnitude is correlated
with the length of the time interval
following the injection.

ii) Bursting is not explained.
iii) Periodicity is not explained.
iv) A standing load of material

is present at the flagellar base.
d) Biochemical clock A biochemical oscillator at the

base controls entry timing.
i) Periodicity. i) Bursting.

ii) The frequency changes as
the injection rate changes.

iii) Larger accumulation gives
slower dynamics.

iv) No explanation for the regulation
of IFT train size.

Dishinger et al. (24) presented evidence that several biochemical regulators of the nuclear import system are at work in the mammalian cilium. Thus,
a potential model for the injector is that of (a) a regulated entry channel, with open and close times set by a flagellar length-dependent control system (i.e., the
channel opens more often when the flagellum needs more material). This model predicts a strong positive correlation between the injection rate and the
percentage of time where IFT trains are flowing through the pore. In fact, we observe an insignificant negative correlation (r = −0.12, P = 0.09, n = 218
flagella). Another nuclear import-type model is (b) a checkpoint crossing model, where larger trains take a longer time to transit the pore because each subunit
in the IFT train takes a finite time to transit the pore. So, longer trains take longer to enter. That type of model correctly predicts the correlation between the
injection size and the time interval preceding an injection (Figs. 2A and 3C and Figs. S2B and S7B). However, such a model does not account for the bursting
behavior (Fig. S1), the correlation between injection size, and the time interval following an injection (Fig. 2B and Figs. S2C and S7C) or the periodicity that we
observe (Fig. 1C and Figs. S3 and S6A). The same is true for a trivial model in which (c) IFT material accumulates at a constant rate and then releases into the
flagellum at random times. Such a mechanism could explain the correlation between injection size and preceding time interval but cannot explain the bursting,
periodicity, or correlation between injection size and the following time interval. (d) Biochemical clocks, such as those from circadian systems, are composed of
a set of nonexchanging proteins that keep time in a consistent manner even in lack of a driving force (e.g., night–day cycling). The analog for the IFT system
would be an injector that allows IFT train entry based on its cycling biochemical state. Our data indicate that a throughput of material (i.e., exchanging
components) regulates injection timing and that the timing is not consistent, e.g., the bursting dynamics (Fig. S1) and the lognormal distribution of time
intervals between injections (Fig. S9).
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