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This supplement contains additional material to compleémenproblems for the spherical harmonic ¢deents of E (q), the
the results presented in the main body of the paper. The matabilizing défect of the Laplace-Beltrami regularization seems
terial presented here uses the same definitions, variadnels, to mitigate any potential resulting noise amplificatidfeets.
acronyms that were introduced therein.

. . 3. Effectsof SNR and N on the FRACT and FRT
1. Effectsof fractional anisotropy and & on the FRACT

Two-tensor simulations were also performed to demonstrate Complementing Fig. 11 from the main paper, we also per-
the characteristics of FRACT for tensors with a range of dif-formed similar experiments withN = 64. These results are
ferent anisotropy characteristics, and for a range ﬁé[ﬁnté‘ shown in FIgS S3, and have very similar characteristicéi¢o t
values. As in the previous simulations, we generated data ugesults shown in Fig. 11 foN = 256, other than a small in-
ing a linear combination of two fiusion tensor models with crease in the variance of the histogram peaksl atecreases.
A1 > 1, = A3, and both tensor components were given theGiven the theoretical analysis (e.g., Figs. 5 and 6 from thizam
same relative volume fraction. The principal tensor odent Paper), it is not surprising thal = 64 andN = 256 have
tions were separated by §0and the mean €usivity of both ~ similar resolution characteristics. However, it is noeatiat
tensors was set to 70010 mm?%/s. The tensor eigenvalues increasingN does not have a more significant impact on the
were adjusted to achieve fractional anisotropies betwesmd0 |0w-SNR results, since increasidgmight be expected to have
1. The simulated acquisition usedbavalue of 2000 gnn? and ~ an efect similar to averaging. The lack of more substantial im-
N = 256. Results of applying the FRACT to this data are showrProvement with increasinly can be attributed to the signal bias
in F|g S1. As can be seen, as the simulateflidion tensors be- introduced by the noise floor of the Rician Signal distriboti
come more isotropic (i.e., fractional anisotropy decrepse  (Which will not diminish with increasing\), which reduces dif-
reconstructed FRACT ODFs shrink in magnitude, which is exfusion contrast between dominant and non-dominaffiision
pected because the FRACT nullifies the isotropic componentdirections, hence negatively impacting the ability to aately
of the difusion signal. This feature makes it easy to discrim-identify fiber orientations.
inate between isotropic and anisotropidtfaion characteris-

tics. In addition, the figure confirms that FRACT results vary .
smoothly as a function af. 4. Effects of Volume Fraction on the FRACT and FRT

The numerical simulations presented in the main paper used
multi-tensor signal models, where each tensor componeht ha

Complementing Figs. 9-11 from the main paper, we also pert_he same relative volume fraction. A na}tural question is how
formed similar simulations to examine th&exts of the max- FRACT would behave if the volume fraction were to vary. Due
imum spherical harmonic degréeon the performance of the to the fact that both the FRACT and FRT are linear transforms,

FRACT and the FRT. These results are shown in Fig. S2. Wéhe 'Fheory would suggest t_hat the FR; "E_ RT ODFS_ for_ a
found that performance for both transforms is relativesein- ~ Multi-tensor model should simply be the linear combinatién
sitive toL whenL > 8, as expected from the analysis in the (& FRACTFRT ODFs for the individual tensors, weighted by
previous section. It should be noted that while larger \&iofe the relative volume fraction of each tensor component. $b te

L correspond to increasingly ill-posed least-squares editim thlsi additional 5|_mul_at|ons were performeq using the ssime '
ulation setup as in Figs. 9-11 from the main paper, but atigwi
the volume fraction to vary. Results of these simulatiores ar
*Corresponding author at: 3740 S. McClintock Avenue, EEB2#¥{C shown in Fig. S4.

2564, Los Angeles, CA 90089-2564, USA. Tetl 213 740 2458; fax1 213 It should be noted that the min-max normalization that is

2. Effects of Harmonic Order on the FRACT and FRT
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Email addresses: jhaldar@usc.edu (Justin P. Haldar), used for visualization purposes nonlinearly modifies theeap-
leahy@sipi.usc.edu (Richard M. Leahy) ance of the ODFs in a manner that can potentially confound a
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Figure S1: Results of applying the FRACT to a two-tensor satioih for various values of the tensor fractional anisograpd¢é. The lines shown in each image
correspond to the principal directions of the two tensoedusr simulation. Unlike the figures in the main paper, the mstwicted ODFs in this figure are not
normalized to illustrate their relative “size.”
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Figure S2: Histograms for the locations of local maxima exé@étom the FRT profiles (in blue) and the FRACT profiles (inegreas a function of the true angular
separation between two simulated tensors. The color scads s saturate at 250 counts in a single histogram bin forawget visualization. The true orientations
of the two tensors are also indicated using red lines. All &tons used SNR80, & = 0.34p, andN = 256. The images from left to right show results foffeiient
values ofL. Results are shown for (a)-(d)avalue of 1000 gnn? and (e)-(h) é-value of 2000 gnn?.
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Figure S3: Histograms for the locations of local maxima exé@dtom the FRT profiles (in blue) and the FRACT profiles (inegrefor two simulated tensors
in the x-y plane with orientation angles ef9 and+6 in polar coordinates. The color scale is set to saturate @ca8nts in a single histogram bin for improved
visualization. The true orientations of the two tensorsase indicated using red lines. All simulations uged 0.34o, N = 64, andL = 8. The images from left
to right show results for dierent SNRs. Results are shown for (a)-(d)yealue of 1000 gnn? and (e)-(h) -value of 2000 gnne.
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Figure S4: The impact of the volume fraction ratio (horizomteék) on the (a) FRT and (b) FRACT in multi-tensor simulationithwarying fiber crossing angles
(vertical axis). All simulations used = 256,L = 8, SNR=80, and &-value of 2000 gnnv.



we should also caution that the physical interpretatiorhaf t
measure is not entirely clear, and that the measure is lgdfin
both units and normalization. Further adjustmentganekten-
sive additional testing would be necessary to prove thigyudif
such measures for practical applications, particulanggithe
large number of ways to quantify anisotropy that have previ-
ously been proposed in the literature.

(a) Fractional Anisotropy (b) Norm of FRACT ODF

Figure S5: (a) Conventional fractional anisotropy compudtech a difusion
tensor model of real brain data. (b) Euclidean norm of the FRADF for the
same data.

visual assessment of the relative volume fraction of eaadhco
ponent. However, as expected, the multi-tensor ODFs are al-
most identical to a weighted linear combination of ODFs Hase
on single tensors, with any variations resulting from them
amount of simulated noise that was used in the simulatiaiis. |
observed that angular resolution capabilities are gelydvat-

ter when the dferent tensor components have similar volume
fractions. When the volume fraction ratios are verffatient,
there is a tendency for the smaller ODF peaks to be hidden in
the “side-bands” of the dominant ODF peak. Note that these an
gular resolution characteristics are not specific to the BRT
FRACT, but would also be found with the other ODF estima-
tion approaches that have been proposed for this kind of data
Angular partial volume fects will also confound the ability

to accurately estimate volume fractions from the valuesef t
FRT and FRACT ODF peaks, unless additional modeling con-
straints are imposed (e.g., the fiber response modelinginsed
constrained spherical deconvolution).

5. Novel Measures of Anisotropy?

Tissue anisotropy measures have been widely usedtin di
sion MRI to characterize biological tissues. Since the FRAC
is a method that provides an ODF estimate, any ODF-based
anisotropy measures can also be used with the FRACT. How-
ever, one of the characteristics of the FRACT is that it nul-
lifies isotropic components of the filision signal. One of
the anonymous reviewers suggested that this property ¢tauld
used to enable novel FRACT-specific methods for measuring
the anisotropy of dierent tissues. To examine the feasibility of
this idea, we computed the Euclidean norm of the FRACT ODF,
which can be performedfigciently by taking the square-root
of the sum-of-squares of the spherical harmoniditcients of
the FRACT ODF. The results of this are shown in relation to
the DTI-based fractional anisotropy measure in Fig. S5. As
can be seen, variations in this FRACT-based measure reflect
real variations in brain tissue characteristics. The meakas
large similarities to conventional fractional anisotrpghyough
some diferences in the spatial distribution of the measure are
also apparent. This measure (or similar variations) coold p
tentially be used in quantitative studies to provide nomsight
into the tissue characteristics offidirent subjects. However,
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