
Supplementary Material for “Linear Transforms for Fourier Data on the Sphere:
Application to High Angular Resolution Diffusion MRI of the Brain”

Justin P. Haldar∗, Richard M. Leahy

Signal and Image Processing Institute, Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA

This supplement contains additional material to complement
the results presented in the main body of the paper. The ma-
terial presented here uses the same definitions, variables,and
acronyms that were introduced therein.

1. Effects of fractional anisotropy and ξ on the FRACT

Two-tensor simulations were also performed to demonstrate
the characteristics of FRACT for tensors with a range of dif-
ferent anisotropy characteristics, and for a range of differentξ
values. As in the previous simulations, we generated data us-
ing a linear combination of two diffusion tensor models with
λ1 > λ2 = λ3, and both tensor components were given the
same relative volume fraction. The principal tensor orienta-
tions were separated by 60◦, and the mean diffusivity of both
tensors was set to 700× 10−6 mm2/s. The tensor eigenvalues
were adjusted to achieve fractional anisotropies between 0and
1. The simulated acquisition used ab-value of 2000 s/mm2 and
N = 256. Results of applying the FRACT to this data are shown
in Fig. S1. As can be seen, as the simulated diffusion tensors be-
come more isotropic (i.e., fractional anisotropy decreases), the
reconstructed FRACT ODFs shrink in magnitude, which is ex-
pected because the FRACT nullifies the isotropic components
of the diffusion signal. This feature makes it easy to discrim-
inate between isotropic and anisotropic diffusion characteris-
tics. In addition, the figure confirms that FRACT results vary
smoothly as a function ofξ.

2. Effects of Harmonic Order on the FRACT and FRT

Complementing Figs. 9-11 from the main paper, we also per-
formed similar simulations to examine the effects of the max-
imum spherical harmonic degreeL on the performance of the
FRACT and the FRT. These results are shown in Fig. S2. We
found that performance for both transforms is relatively insen-
sitive to L when L ≥ 8, as expected from the analysis in the
previous section. It should be noted that while larger values of
L correspond to increasingly ill-posed least-squares estimation
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problems for the spherical harmonic coefficients ofE (q), the
stabilizing effect of the Laplace-Beltrami regularization seems
to mitigate any potential resulting noise amplification effects.

3. Effects of SNR and N on the FRACT and FRT

Complementing Fig. 11 from the main paper, we also per-
formed similar experiments withN = 64. These results are
shown in Figs. S3, and have very similar characteristics to the
results shown in Fig. 11 forN = 256, other than a small in-
crease in the variance of the histogram peaks asN decreases.
Given the theoretical analysis (e.g., Figs. 5 and 6 from the main
paper), it is not surprising thatN = 64 andN = 256 have
similar resolution characteristics. However, it is notable that
increasingN does not have a more significant impact on the
low-SNR results, since increasingN might be expected to have
an effect similar to averaging. The lack of more substantial im-
provement with increasingN can be attributed to the signal bias
introduced by the noise floor of the Rician signal distribution
(which will not diminish with increasingN), which reduces dif-
fusion contrast between dominant and non-dominant diffusion
directions, hence negatively impacting the ability to accurately
identify fiber orientations.

4. Effects of Volume Fraction on the FRACT and FRT

The numerical simulations presented in the main paper used
multi-tensor signal models, where each tensor component had
the same relative volume fraction. A natural question is how
FRACT would behave if the volume fraction were to vary. Due
to the fact that both the FRACT and FRT are linear transforms,
the theory would suggest that the FRACT/FRT ODFs for a
multi-tensor model should simply be the linear combinationof
the FRACT/FRT ODFs for the individual tensors, weighted by
the relative volume fraction of each tensor component. To test
this, additional simulations were performed using the samesim-
ulation setup as in Figs. 9-11 from the main paper, but allowing
the volume fraction to vary. Results of these simulations are
shown in Fig. S4.

It should be noted that the min-max normalization that is
used for visualization purposes nonlinearly modifies the appear-
ance of the ODFs in a manner that can potentially confound a
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Figure S1: Results of applying the FRACT to a two-tensor simulation for various values of the tensor fractional anisotropy andξ. The lines shown in each image
correspond to the principal directions of the two tensors used for simulation. Unlike the figures in the main paper, the reconstructed ODFs in this figure are not
normalized to illustrate their relative “size.”

Figure S2: Histograms for the locations of local maxima extracted from the FRT profiles (in blue) and the FRACT profiles (in green) as a function of the true angular
separation between two simulated tensors. The color scale isset to saturate at 250 counts in a single histogram bin for improved visualization. The true orientations
of the two tensors are also indicated using red lines. All simulations used SNR=80,ξ = 0.34ρ, andN = 256. The images from left to right show results for different
values ofL. Results are shown for (a)-(d) ab-value of 1000 s/mm2 and (e)-(h) ab-value of 2000 s/mm2.
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Figure S3: Histograms for the locations of local maxima extracted from the FRT profiles (in blue) and the FRACT profiles (in green) for two simulated tensors
in the x-y plane with orientation angles of−θ and+θ in polar coordinates. The color scale is set to saturate at 250 counts in a single histogram bin for improved
visualization. The true orientations of the two tensors arealso indicated using red lines. All simulations usedξ = 0.34ρ, N = 64, andL = 8. The images from left
to right show results for different SNRs. Results are shown for (a)-(d) ab-value of 1000 s/mm2 and (e)-(h) ab-value of 2000 s/mm2.

Figure S4: The impact of the volume fraction ratio (horizontalaxis) on the (a) FRT and (b) FRACT in multi-tensor simulations with varying fiber crossing angles
(vertical axis). All simulations usedN = 256,L = 8, SNR=80, and ab-value of 2000 s/mm2.
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Figure S5: (a) Conventional fractional anisotropy computedfrom a diffusion
tensor model of real brain data. (b) Euclidean norm of the FRACT ODF for the
same data.

visual assessment of the relative volume fraction of each com-
ponent. However, as expected, the multi-tensor ODFs are al-
most identical to a weighted linear combination of ODFs based
on single tensors, with any variations resulting from the small
amount of simulated noise that was used in the simulations. It is
observed that angular resolution capabilities are generally bet-
ter when the different tensor components have similar volume
fractions. When the volume fraction ratios are very different,
there is a tendency for the smaller ODF peaks to be hidden in
the “side-bands” of the dominant ODF peak. Note that these an-
gular resolution characteristics are not specific to the FRTand
FRACT, but would also be found with the other ODF estima-
tion approaches that have been proposed for this kind of data.
Angular partial volume effects will also confound the ability
to accurately estimate volume fractions from the values of the
FRT and FRACT ODF peaks, unless additional modeling con-
straints are imposed (e.g., the fiber response modeling usedin
constrained spherical deconvolution).

5. Novel Measures of Anisotropy?

Tissue anisotropy measures have been widely used in diffu-
sion MRI to characterize biological tissues. Since the FRACT
is a method that provides an ODF estimate, any ODF-based
anisotropy measures can also be used with the FRACT. How-
ever, one of the characteristics of the FRACT is that it nul-
lifies isotropic components of the diffusion signal. One of
the anonymous reviewers suggested that this property couldbe
used to enable novel FRACT-specific methods for measuring
the anisotropy of different tissues. To examine the feasibility of
this idea, we computed the Euclidean norm of the FRACT ODF,
which can be performed efficiently by taking the square-root
of the sum-of-squares of the spherical harmonic coefficients of
the FRACT ODF. The results of this are shown in relation to
the DTI-based fractional anisotropy measure in Fig. S5. As
can be seen, variations in this FRACT-based measure reflect
real variations in brain tissue characteristics. The measure has
large similarities to conventional fractional anisotropy, though
some differences in the spatial distribution of the measure are
also apparent. This measure (or similar variations) could po-
tentially be used in quantitative studies to provide novel insight
into the tissue characteristics of different subjects. However,

we should also caution that the physical interpretation of this
measure is not entirely clear, and that the measure is lacking in
both units and normalization. Further adjustments and/or exten-
sive additional testing would be necessary to prove the utility of
such measures for practical applications, particularly given the
large number of ways to quantify anisotropy that have previ-
ously been proposed in the literature.
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