Supplementary Information

DETERMINANTS INVOLVED IN SUBTYPE-SPECIFIC FUNCTIONS OF RAT TRACE

AMINE-ASSOCIATED RECEPTORS 1 AND 4

Claudia Stäubert, Jens Bohnekamp, Torsten Schöneberg[#] Institute of Biochemistry, Medical Faculty, University Leipzig, 04103 Leipzig, Germany

Running title: Determinants defining Taar-specific function

[#]To whom correspondence should be addressed: Torsten Schöneberg, Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany, Phone: +49-341-9722-151, Fax: +49-341-9722-159, E-mail: schoberg@medizin.uni-leipzig.de

Figure S1. Structural conservation of rat TA₁ and rat Taar4. Amino acid sequences of rat TA1 and rat Taar4 are shown. Positions conserved in 27 mammalian species (*Bos taurus, Choloepus hoffmanni, Cavia porcellus, Dasypus novemcinctus, Dipodomys ordii, Equus caballus, Erinaceus europaeus, Echinops telfairi, Felis catus, Loxodonta africana, Monodelphis domestica, Macropus eugenii, Myotis lucifugus, Macaca mulatta, Microcebus murinus, Mus musculus, Ornithorhynchus anatinus, Oryctolagus cuniculus, Papio hamadryas, Pongo pygmaeus, Pteropus vampyrus, Rattus norvegicus, Sorex araneus, Saguinus oedipus, Saimiri sciureus, Sus scrofa, Tupaia belangeri) are depicted in black. Positions that vary only by two amino acids are shown in gray. Positions given in white are not preserved during evolution. With 83.0% identity Taar4 is slightly higher conserved than TA₁ (80.7%).*

Figure S2. Functional characterization of rat TA₁, rat Taar4 and C_{TM1/2/4/5/7} in SEAP reporter gene assays. Correlation of basal or stimulated receptor activity and the amount of transfected plasmid DNA. HEK-293 cells were transfected with 25 ng, 50 ng or 100 ng of the indicated plasmid DNA per well in 96-well plate. The total amount of transfected plasmid DNA was constant since differences were compensated by addition of respective amount empty vector. A-C: CRE-SEAP reporter gene assay in presence or absence of β -PEA D-F: SRE-SEAP reporter gene assay. G-I: NFAT-SEAP reporter gene assay. SEAP activity is expressed as fold over basal levels of HEK293 cells transfected with empty vector pcDps. Data are presented as mean ± SEM of two to four independent experiments, each carried out in triplicate.

Figure S3. Functional characterization of rat TA₁ and rat Taar4 in inositol phosphate (IP) assays. A: IP accumulation in presence and absence of agonist. M₃ muscarinic acetylcholine receptor (NCBI Reference Sequence: NM_000740.2) served as positive control. B: $G\alpha_{\Delta 6qi4myr}$ (abbreviated ΔG_{qi}) turns the $G\alpha_i$ -coupled signal into the $G\alpha_q$ pathway (phospholipase C activation measured as PI-turnover). M₄ muscarinic acetylcholine receptor (NCBI Reference Sequence: NM_000741.2) served as positive control.

ID	Sequence 5' -> 3'	Purpose
OLIGO.A	GTGCAAATCAAAGAACTGCTCCTC	pcDps forward (amplification/sequencing)
OLIGO.B	CCTGGTTCTTTCCGCCTCAGAAG	pcDps reverse (amplification/sequencing)
OLIGO.12	ATTTTAGCACAATGTCCAGCTCCAA	rat Taar1 amplification S
OLIGO.13	TAAAAGCCCATGAAATCAGTGCCTA	rat Taar1 amplification AS
OLIGO.9	CATCGTCCTTATAGTCCAAAAATAGC TTAGACC	rat Taar1 FLAG adaptor AS
OLIGO.10	CCCGACTACGCCCATCTTTGCCACAAT AG	rat Taar1 HA adaptor S
OLIGO.c	TTTGGGGAAAACAAGTTCCTGGT	rat Taar4 amplification S
OLIGO.d	TCTGTGAGGTTCAGCACTCATGC	rat Taar4 amplification AS
OLIGO.e	CATCGTCCTTATAGTCAGGATGTGCA GGATGC	rat Taar4 FLAG-adaptor AS
OLIGO.f	CCCGACTACGCCAATTCACCTGACCT CT	rat Taar4 HA-adaptor S
OLIGO.0	CGCGAATTCCCCACCATGTACCCCTA CGACGTCCC	HA uni EcoRI+Coseq S
OLIGO.1	CGCCGCACTAGTTCACTTATCGTCATC GTCCTTAT	FLAG uni SpeI AS
OLIGO.114	CCCAAACTTCTACGTGCCTTTCTCCAA CAAGACGGGCGTGGTGCGCCATCTTT GCCACAATAGCGCGAAT	rat Taar1 HA-Rhodopsin adaptor S
OLIGO.115	CCCAAACTICIACGIGCCITICICCAA CAAGACGGGCGTGGTGCGCAATTCAC CTGACCTCTGGTACTCC	rat Taar4 HA-Rhodopsin adaptor S
OLIGO.113	GACGTCCCCGACTACGCCAACGGGAC CGAGGGCCCAAACTTCTACGTGCCTT TC	HA-Rhod-uni S
OLIGO.70	CGTGTGAAGTTGCTTGAAGTGGGCAA TG	TMD1-rat Taar4 AS
OLIGO.71	CATTGCCCACTTCAAGCAACTTCACA C	TMD2-rat Taar1 S
OLIGO.72	GGAAGACATTATACAAATCTTCAGGG ATAACATAGCCCAGGAAA	TMD6-rat Taar1 AS
OLIGO.73	CCTTTCCTGGGCTATGTTATCCCTGAA GATTTGTATAATGTCTTCCTC	TMD7-rat Taar4 S
OLIGO.74	CCGCCACTATGCTGTCTGTGACCCTTT AAGATACAAAGCCAAGA	TMD4-rat Taar1 S
OLIGO.75	TCTTGGCTTTGTATCTTAAAGGGTCAC AGACAGCATAGTGGCGG	TMD3-rat Taar4 AS
OLIGO.76	AGTGGGTCACAGACAGCATAGTAGCG GTCAATGG	TMD3-rat Taar1 AS
OLIGO.77	CCATTGACCGCTACTATGCTGTCTGTG ACCCACT	TMD4-rat Taar4 S
OLIGO.78	GGAGCTGCTTGAAGTGGGATATCGAA AT	TMD1-rat Taar1 AS
OLIGO.79	AGTTCCCCAAAGTACCAGCACGACTC GATAGACCGGACCATACTGAAGGGCA TGACCACGCAGCTCAACAGGAAGTCT GTGGTAGCCAT	TMD2-rat Taar4 AS

 Table S1. Primers used for rat Taar1 and rat Taar4 amplification and generation of chimeras.

OLIGO.80	TCGATATCCCACTTCAAGCAGCTCCA CTCCCCGACCAACTTCCTTATTCTCTC CATGGCTACCACAGACTTCCTGTT	TMD2-rat Taar4 S
OLIGO.81	CTATCGAGTCGTGCTGGTACTTTGGG GAACT	TMD3-rat Taar1 S
OLIGO.82	AGGTCTCCGAAGTACCAGCAGTGCTC AACTG	TMD2-rat Taar1 AS
OLIGO.83	AGGGTCGCACACAGCATAGTGGCGGT CCACTGAGATGAAACAGAGGTGGAA AATGGAGGTGGTACAGAGCATGATGT CACAGCA	TMD3-rat Taar4 AS
OLIGO.84	CAGTTGAGCACTGCTGGTACTTCGGA GACCTCTTTTGCAAAGTCCACAGCTG CTGTGACATCATGCTCTG	TMD3-rat Taar4 S
OLIGO.85	CGACGCCGACGGTGATCTTGGCTTTG TATCTTAAAGG	TMD3-rat Taar1 AS
OLIGO.86	CCTGATTGTGATACTGCTCCTCAGCAC CAATCAAATTTAATTCTGAGAACACC	TMD4-rat Taar4 AS
OLIGO.87	CCTTTAAGATACAAAGCCAAGATCAC CGTCGGCGTCGTGGGGGGGTCTTTCTACT CATCAGTTGGTCTGTCCCCATCCTGTT TGCCTTTG	TMD4-rat Taar4 S
OLIGO.88	ATTAAATTTGATTGGTGCTGAGGAGC AGTATCACAATCAGG	TMD5-rat Taar1 S
OLIGO.89	ATATCAACACACACAAACCTGTACAG ACCTGATTGTGATACTGCTCCT GACCTCGCTTGTCCTTTAGCAACTGTG	TMD4-rat Taar1 AS
OLIGO.90	AAAATGTGTATATAAATCCCCACCAT GATTGCCCCAGGCAGAAAGAAAGCTA TAAAGGAAGCCAGC	TMD5-rat Taar4 AS
OLIGO.91	AGGAGCAGTATCACAATCAGGTCTGT ACAGGTTTGTGTGTGTGTGATATTTAAC AAGCTCTGGGGAGTGCTGGCTTCCTTT ATAGCTTTCT	TMD5-rat Taar4 S
OLIGO.92	GGATTTATATACACATTTTCACAGTTG CTAAAGGACAAGCGAGGTC	TMD6-rat Taar1 S
OLIGO.93	CGGATGTGGCCTTCATTTCCCCTTCCA ATCCAACT	TMD5-rat Taar1 AS
OLIGO.94	AGTTGGATTGGAAGGGGAAATGAAG GCCACATCCGGAAAGGAAA	TMD6-rat Taar4 AS
OLIGO.95	GGCCCTCTCAGAAAGCAAAAGCAGAG CGCCACAAAGCAAGGAAACAAAAGC CGCGAAAACCTTAGGGATCATGGTG	TMD6-rat Taar4 S
OLIGO.96	CATGGTCCTGGACCCTTTCATTGGTTT TACAACCC	TMD7-rat Taar1 S
OLIGO.109	CACAGCACAAATACTCCCATGAC	TMD6-intra-ratTaar4/extra-rat Taar1 AS
OLIGO.110	GTCATGGGAGTATTTGTGCTGTGCTG GTGCCCGTTCTTTTTCTGCA	TMD6-intra-rat Taar4/extra-rat Taar1 S
OLIGO.111	AGAAGGGCAGCCAACACAGGAGGAA AACGCCCACCA	TMD6-intra-rat Taar1/extra-rat Taar4 AS
OLIGO.112	CTGTGTTGGCTGCCCTTCT	TMD6-intra-rat Taar1/extra-rat Taar4 S
OLIGO.116	TGGAGCTGCTTGAAGTGGGATATCGA	TMD1 rat Taar1 AS

	AATGA	
OLIGO.117	TTCGATATCCCACTTCAAGCAGCTCCA	TMD2 rat Taar4 S
OLIGO.118	ATTCAGTGTGTCATTCAGAGTGGGTG GGGTTGTAAAACCAAT	TMD6 rat Taar4 AS
OLIGO.119	TTGGTTTTACAACCCCACCCACTCTGA ATGACACACTGAAT	TMD7 rat Taar1 S

Table S2. NCBI	database accession	a numbers and sec	quence description
----------------	--------------------	-------------------	--------------------

		TA ₁		Taar4	
		length	source	length	source
Mammalia					
Protheria Ornithorhynchus anatinus	platypus	full length	NCBI Ornithorhynchus anatinus trace archive: gnl ti 649529709 and others	full length	NCBI Ornithorhynchus anatinus trace archive: gnl ti 1246961726 and others
Metatheria					
Monodelphis domestica	gray short-tailed opossum	full length	NCBI Monodelphis domestica trace archive: gnl ti 337177360 and others	full length 3x	NCBI Monodelphis domestica trace archive: gnl ti 473024684 and others
Macropus eugenii	tammar wallaby	full length	NCBI <i>Macropus eugenii</i> trace archive: gnl ti 1649014544 and others	full length	NCBI <i>Macropus eugenii</i> trace archive: gnl ti 1275406430 and others
Eutheria					
Afrotheria Procavia capensis	cape rock hyrax	full length (P)	NCBI <i>Procavia capensis</i> trace archive: gnl ti 1303042942 and others	full length 3x	NCBI <i>Procavia capensis</i> trace archive: gnl ti 1203477241 and others
Loxodonta africana	African savanna elephant	full length	NCBI <i>Loxodonta africana</i> trace archive: gnl ti 537131216 and others	full length 2x	NCBI <i>Loxodonta africana</i> trace archive: gnl ti 1695377756 and others
Echinops telfairi	lesser hedgehog tenrec	full length 2x (1P)	NCBI <i>Echinops telfairi</i> trace archive: gnl ti 691100554 and others	full length $2x (1P)$	NCBI <i>Echinops telfairi</i> trace archive: gnl ti 688316620 and others
Xenarthra					

Dasypus novemcinctus	nine-banded Armadillo	full length	NCBI <i>Dasypus novemcinctus</i> trace archive: gnl ti 566803806 and others	full length	NCBI <i>Dasypus novemcinctus</i> trace archive: gnl ti 567276505 and others
Choloepus hoffmanni	Hoffmann's two- fingered sloth	full length	NCBI <i>Choleopus hoffmanni</i> trace archive: gnl ti 1302995278 and others	full length	NCBI <i>Choleopus hoffmanni</i> trace archive: gnl ti 1357779584 and others
Laurasiatheria Insectivora					
Erinaceus europaeus	western European hedgehog	full length	NCBI <i>Erinaceus europaeus</i> trace archive: gnl ti 909479654 and others	full length 2x (1P)	NCBI <i>Erinaceus europaeus</i> trace archive: gnl ti 932971697 and others
Sorex araneus	European shrew	full length	NCBI Sorex araneus trace archive: gnl ti 877297697 and others	full length 2x (1P)	NCBI Sorex araneus trace archive: gnl ti 893813953 and others
Chiroptera					
Pteropus vampyrus	large flying fox	full length	NCBI <i>Pteropus vampyrus</i> trace archive: gnl ti 1320431729 and others	full length	NCBI <i>Pteropus vampyrus</i> trace archive: gnl ti 1329134482 and others
Myotis lucifugus	little brown bat	full length (2x)	NCBI <i>Myotis lucifugus</i> trace archive: gnl ti 1874379801 and others	full length	NCBI <i>Myotis lucifugus</i> trace archive: gnl ti 1899487221and others
Cetartiodactyla					
Bos taurus	cattle	full length	NCBI <i>Bos taurus</i> trace archive: gnl ti 393291934 and others	full length	NCBI <i>Bos taurus</i> trace archive: gnl ti 620739238 and others
Sus scrofa	boar	full length (2x)	NCBI <i>Sus scrofa</i> trace archive: gnl ti 2042809629 and others	full length	NCBI <i>Sus scrofa</i> trace archive: gnl ti 1579919251 and others
Perissodactyla					
Equus caballus	horse	full length	NCBI <i>Equus caballus</i> trace archive: gnl ti 1400434870 and others	full length	NCBI <i>Equus caballus</i> trace archive: gnl ti 1234728610 and others
Carnivora Feliformia					

<i>Felis catus</i> cat		full length NCBI <i>Felis catus</i> trace archive: gnl ti 711855444 and others		full length	NCBI <i>Felis catus</i> trace archive: gnl ti 965531899 and others			
Canidae								
Canis familiaris	dog	full length (P)	NCBI <i>Canis familiaris</i> trace archive: gnl ti 313292271 and others	full length	NCBI <i>Canis familiaris</i> trace archive: gnl ti 302723376 and others			
Euarchontoglires Scandentia Tupaia belangeri	northern tree shrew	full length	NCBI <i>Tupaia belangeri</i> trace archive: gnl ti 1044829742 and others	full length 2x	NCBI <i>Tupaia belangeri</i> trace archive: gnl ti 1046628937 and others			
Glires								
Lagomorpha								
Leporidae								
Oryctolagus cuniculus	european rabbit	full length	NCBI <i>Oryctolagus cuniculus</i> trace archive: gnl ti 1940715560 and others	full length	NCBI <i>Oryctolagus cuniculus</i> trace archive: gnl ti 638702844 and others			
Rodentia								
Cavia porcellus	domestic guinea pig	full length	NCBI <i>Cavia porcellus</i> trace archive: gnl ti 1617005707 and others	full length 2x	NCBI <i>Cavia porcellus</i> trace archive: gnl ti 1596694171 and others			
Dipodomys ordii	Ord's kangaroo rat	full length	NCBI <i>Dipodomys ordii</i> trace archive: gnl ti 1535262597 and others	full length	NCBI <i>Dipodomys ordii</i> trace archive: gnl ti 1586901258 and others			
Mus musculus	house mouse	full length	NCBI accession: NM_053205	full length	NCBI accession: FJ372497, NM_001008499			
Rattus norvegicus	Norway rat	full length	NCBI accession: NM_134328	full length	NCBI accession: FJ372521, NM_175583			
Primates Strepsirrhini								

Lemuriformes		1			
Microcebus murinus	gray mouse lemur	full length	NCBI <i>Microcebus murinus</i> trace archive: gnl ti 1576501568 and others	full length	NCBI <i>Microcebus murinus</i> trace archive: gnl ti 1563038889 and others
Haplorrhini					
Simiiformes					
Platyrrhini					
Cebidae	c				
Callithrix jacchus	common marmoset	full length	NCBI <i>Callithrix jacchus</i> trace archive: gnl ti 974234240 and others	full length (P)	NCBI <i>Callithrix jacchus</i> trace archive: gnl ti 1133228298 and others
Saguinus oedipus	cotton-top tamarin	full length	NCBI accession: GQ892034	full length	NCBI accession: GQ892037
Saimiri sciureus	common squirrel monkey	full length	NCBI accession: EF549698	full length	NCBI accession: EF549700
Catarrhini Cercopithecoidea					
Macaca mulatta	rhesus monkey	full length	<i>Macaca mulatta</i> trace archive: gnl ti 402223230 and others	full length	NCBI <i>Macaca mulatta</i> trace archive: gnl ti 486761772 and others
Papio hamadryas	hamadryas baboon	full length	NCBI <i>Papio hamadryas</i> trace archive: gnl ti 1943570175 and others	full length	NCBI <i>Papio hamadryas</i> trace archive: gnl ti 1959076673 and others
Hominoidea Hylobatidae					
Nomascus leucogenys	white-cheeked Gibbon	full length	NCBI <i>Nomascus leucogenys</i> trace archive: gnl ti 1891571032 and others	full length (P)	NCBI <i>Nomascus leucogenys</i> trace archive: gnl ti 2088070237 and others

Hominidae					
Homo sapiens	human	full length	NCBI accession: NM_138327	full length (P)	NCBI accession: NG_004855
Pan troglodytes	chimpanzee	full length	NCBI accession: NM_001009145	full length (P)	NCBI accession: FJ372513, FJ372514, AY702310
Pongo pygmaeus	orangutan	full length	NCBI <i>Pongo pygmaeus abelii</i> trace archive: gnl ti 820557702 and others	full length (P)	NCBI Pongo pygmaeus abelii trace archive: gnl ti 886956191 and others

chimera	rat TA ₁	rat Taar4	HA-tag	FLAG-tag	Rhod-tag
C _{TM1-3}	129-332	2-139	+	+	-
C _{TM1-3} R	129-332	2-139	+	+	+
Стм4-7	2-128	140-347	+	+	-
C _{TM4-7} R	2-128	140-347	+	+	+
C _{TM1}	55-332	2-65	+	+	-
$C_{TM1}R$	55-332	2-65	+	+	+
C _{TM2}	2-54; 92-332	66-102	+	+	-
C _{TM2} R	2-54; 92-332	66-102	+	+	+
C _{TM3}	2-91; 129-332	103-139	+	+	-
C _{TM3} R	2-91; 129-332	103-139	+	+	+
C _{TM4}	2-134; 169-332	146-179	+	+	-
C _{TM4} R	2-134; 169-332	146-179	+	+	+
C _{TM5}	2-175; 217-332	187-226	+	+	-
C _{TM5} R	2-175; 217-332	187-226	+	+	+
Стмб	2-235; 274-332	248-285	+	+	-
C _{TM6} R	2-235; 274-332	248-285	+	+	+
C _{TM6i}	2-235; 262-332	248-273	+	+	-
C _{TM6i} R	2-235; 262-332	248-273	+	+	+
Стмбо	2-261; 274-332	274-285	+	+	-
C _{TM60} R	2-261; 274-332	274-285	+	+	+
C _{TM7}	2-279	292-347	+	+	-
CR _{TM7} R	2-279	292-347	+	+	+
C _{TM1/7}	55-279	2-65; 292-34	+	+	-
C _{TM1/7} R	55-279	2-65; 292-34	+	+	+
C _{TM2/3}	2-54; 129-332	66-139	+	+	-
C _{TM2/4}	2-54; 92-134; 169-332	66-102; 146-179	+	+	-
$C_{TM2/4}R$	2-54; 92-134; 169-332	66-102; 146-179	+	+	+
C _{TM2/5}	2-54; 92-175; 217-332	66-102; 187-226	+	+	-
C _{TM2/5} R	2-54; 92-175; 217-332	66-102; 187-226	+	+	+
C _{TM3/6}	2-91; 129-235; 274-332	103-139; 248-285	+	+	-
C _{TM4/5}	2-134; 169-175; 217-332	146-179; 187-226	+	+	-
C _{TM4/5} R	2-134; 169-175; 217-332	146-179; 187-226	+	+	+
Стити	2-54; 92-134; 169-175;	66-102; 146-179; 187-	+	+	-
C1M2/4/5	217-332	226	·		
CmaureR	2-54; 92-134; 169-175;	66-102; 146-179; 187-	+	+	+
C1M2/4/51	217-332	226	·		·
C _{TM2/3/4/5}	2-54; 217-332	66-226	+	+	-
C _{TM2/4/5/6}	2-54; 92-134; 169-175;	66-102; 146-179; 187- 285	+	+	-
	214-332	203 2_102: 146_170: 187			
C _{TM1/2/4/5/7}	92-134; 169-175; 217-279	226, 292-347	+	+	-
C _{TM2-7}	2-54	66-347	+	+	-
C _{TM1-6}	280-332	2-291	+	+	-
C _{TM2-6}	2-54; 280-332	66-291	+	+	-

Table S3. Detailed description of rat TA₁-Taar4 chimeras generated in this study.

Various rat TA₁-Taar4 chimeras were generated as described in *experimental procedures*. The construct designation and the exact constitution are outlined. Numbers given refer to the exact rat TA₁ and rat Taar4 amino acid position (without the epitope tags), respectively. + epitope tag present; -, no epitope tag; HA-tag: YPYDVPDYA; FLAG-tag: DYKDDDDK; RHOD-tag: NGTEGPNFYVPFSNKTGVVR

	% identity between	% identity among	% identity among
	rat TA ₁ and rat Taar4	27 mammalian TA ₁	27 mammalian Taar4
full length	46.8	80.7	83.0
N-term	20.0	66.2	66.1
TM1	40.0	81.0	76.0
IL1	83.3	98.8	96.3
TM2	66.7	90.9	95.7
EL1	83.3	78.6	94.0
TM3	63.6	93.6	93.4
IL2	54.5	83.6	87.9
TM4	47.8	77.4	79.5
EL2	35.7	74.6	83.9
TM5	42.3	82.1	90.3
IL3	23.3	64.1	66.1
TM6	59.4	84.7	86.3
EL3	50.0	73.7	82.8
TM7	42.3	84.3	90.1
C-term	51.5	78.0	79.8

Table S4. Structural comparison of TA_1 and Taar4 orthologs

Protein sequence of rat TA_1 und rat Taar4 were compared for all domains. The sequence information of 27 full-length mammalian TA_1 and Taar4 orthologs (see suppl. Figure S1) was used to determine the structural conservation of the respective receptor (given as % identity determined by pairwise comparison using MegAlign).

		β-ΡΕΑ	Tyr	Trp	(+) Pseph	(+) Eph	(+) MAmp	MDMA	LSD	Naph	Xylo	Oxy	Tram	Neo-Syn	Amio	Betahis
	Basal cAMP	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}	E _{max}
R1	2.3 ± 0.5 (5)	22.2 ± 7.3 (5)	24.6 ± 6.5 (3)	17.9 ± 5.8 (3)	3.2 ± 0.3 (3)	$3.0 \pm 0.5 (5)$	10.4± 1.7 (5)	9.0 ± 1.5 (5)	3.7 ± 0.9 (5)	11.0 ± 2.5 (5)	8.2 ± 1.7 (5)	4.9 ± 1.2 (5)	11.7 ± 4.3 (5)	5.4 ± 1.1 (5)	2.8 ± 0.5 (3)	12.8 ± 1.6 (3)
R1-R	7.1 ± 1.4 (5)	55.9 ± 15.3 (5)	70.8 ± 29.4 (3)	57.7 ± 23.2 (3)	$10.5 \pm 3.6 (3)$	13.4 ± 3.8 (5)	40.8±12.3 (5)	35.1 ± 8.5 (5)	$19.8 \pm 4.9 (5)$	44.1 ± 14.4 (5)	28.4 ± 6.1 (5)	23.2 ± 7.9 (5)	34.4 ± 12.7 (5)	18.6 ± 4.5 (5)	11.6 ± 2.2 (3)	55.8 ± 12.6 (3)
R4	0.9 ± 0.4 (4)	1.2 ± 0.2 (4)	1.2 ± 0.3 (3)	1.2 ± 0.3 (3)	0.7 ± 0.2 (3)	1.0 ± 0.3 (4)	0.8 ± 0.4 (4)	0.7 ± 0.3 (4)	1.1 ± 0.3 (4)	1.1 ± 0.3 (4)	0.8 ± 0.3 (4)	0.9 ± 0.4 (4)	0.6 ± 0.3 (4)	0.8 ± 0.3 (4)	1.5 ± 0.3 (3)	0.9 ± 0.4 (3)
R4R	1.2 ± 0.3 (4)	1.5 ± 0.4 (4)	1.6 ± 0.4 (3)	1.9 ± 0.6 (3)	0.9 ± 0.3 (3)	1.0 ± 0.3 (4)	1.1 ± 0.4 (4)	1.2 ± 0.5 (4)	1.4 ± 0.6 (4)	1.4 ± 0.5 (4)	1.3 ± 0.5 (4)	1.0 ± 0.4 (4)	1.2 ± 0.3 (4)	1.0 ± 0.3 (4)	2.5 ± 1.1 (3)	1.8 ± 0.1 (3)
C _{TM1-3}	1.2 ± 0.2 (3)	1.5 ± 0.3 (3)	1.7 ± 0.3 (3)	1.5 ± 0.3 (3)	1.6 ± 0.5 (3)	2.0 ± 0.7 (3)	1.5 ± 0.3 (3)	1.5 ± 0.4 (3)	1.5 ± 0.3 (3)	1.9 ± 0.5 (3)	1.4 ± 0.2 (3)	1.9 ± 0.3 (3)	1.7 ± 0.5 (3)	1.5 ± 0.2 (3)	2.0 ± 0.1 (3)	1.6 ± 0.2 (3)
C _{TM4-7}	1.0 ± 0.1 (3)	0.7 ± 0.3 (3)	0.8 ± 0.3 (3)	0.7 ± 0.1 (3)	$1.2 \pm 0.6 (3)$	1.1 ± 0.3 (3)	$1.3 \pm 0.6 (3)$	0.7 ± 0.2 (3)	1.0 ± 0.4 (3)	1.1 ± 0.5 (3)	0.9 ± 0.3 (3)	0.9 ± 0.2 (3)	0.9 ± 0.3 (3)	0.6 ± 0.4 (3)	1.0 ± 0.3 (3)	0.8 ± 0.3 (3)
C _{TM1}	0.9 ± 0.1 (3)	0.8 ± 0.1 (3)	0.9 ± 0.3 (3)	0.9 ± 0.1 (3)	0.8 ± 0.1 (3)	1.0 ± 0.2 (3)	0.8 ± 0.1 (3)	0.6 ± 0.1 (3)	0.7 ± 0.1 (3)	0.8 ± 0.1 (3)	0.8 ± 0.1 (3)	0.9 ± 0.2 (3)	0.7 ± 0.1 (3)	0.6 ± 0.1 (3)	2.6 ± 0.2 (3)	1.8 ± 0.1 (3)
C _{TM2}	3.3 ± 0.5 (4)	31.2 ± 6.1 (4)	37.5 ± 7.4 (3)	33.4± 5.4 (3)	6.3 ± 1.0 (3)	7.5 ± 0.9 (4)	28.1 ± 4.9 (4)	19.9 ± 0.8 (4)	8.7 ± 0.7 (4)	22.7 ± 5.6 (4)	14.8 ± 3.7 (4)	11.1 ± 4.6 (4)	18.4 ± 4.5 (4)	8.1 ± 2.0 (4)	4.7 ± 0.3 (3)	24.4 ± 5.5 (3)
C _{TM3}	0.8 ± 0.3 (3)	0.9 ± 0.4 (3)	0.6 ± 0.2 (3)	0.9 ± 0.4 (3)	0.8 ± 0.3 (3)	0.7 ± 0.3 (3)	0.8 ± 0.4 (3)	0.7 ± 0.3 (3)	0.9 ± 0.4 (3)	1.0 ± 0.3 (3)	0.8 ± 0.3 (3)	0.5 ± 0.2 (3)	0.6 ± 0.2 (3)	1.0 ± 0.5 (3)	1.1 ± 0.4 (3)	1.0 ± 0.3 (3)
C _{TM4}	2.0 ± 0.7 (3)	42.9 ± 3.3 (3)	57.6 ± 16.4 (3)	38.9 ± 6.9 (3)	7.4 ± 0.5 (3)	$6.8 \pm 0.6 (3)$	27.5 ± 1.3 (3)	20.6 ± 1.9 (3)	$6.0 \pm 0.6 (3)$	23.2 ± 4.5 (3)	15.2 ± 2.1 (3)	12.9 ± 3.4 (3)	26.3 ± 5.8 (3)	10.9 ± 2.3 (3)	4.2 ± 0.8 (3)	23.7 ± 4.6 (3)
C _{TM5}	2.3 ± 0.5 (4)	28.1 ± 6.4 (4)	29.4 ± 4.8 (3)	25.4 ± 5.2 (3)	7.1 ± 1.6 (3)	10.6 ± 1.4 (4)	28.3 ± 6.1 (4)	16.9 ± 1.8 (4)	5.5 ± 1.2 (4)	22.1 ± 5.9 (4)	15.9 ± 3.8 (4)	5.8 ± 1.9 (4)	8.6 ± 1.7 (4)	5.2 ± 1.1 (4)	$3.2 \pm 1.6 (3)$	28.4 ± 6.1 (3)
C _{TM6}	1.0 ± 0.6 (3)	0.7 ± 0.3 (3)	0.7 ± 0.4 (3)	0.7 ± 0.3 (3)	1.5 ± 0.3 (3)	1.1 ± 0.2 (3)	0.9 ± 0.4 (3)	0.6 ± 0.3 (3)	0.5 ± 0.3 (3)	0.7 ± 0.3 (3)	0.7 ± 0.1 (3)	1.1 ± 0.2 (3)	0.9 ± 0.1 (3)	0.6 ± 0.3 (3)	1.0 ± 0.4 (3)	0.8 ± 0.3 (3)
C _{TM6i}	$1.1 \pm 0.6 (3)$	3.1 ± 0.8 (3)	3.1 ± 0.5 (3)	2.7 ± 0.6 (3)	1.4 ± 0.4 (3)	1.2 ± 0.3 (3)	2.5 ± 0.9 (3)	2.5 ± 1.0 (3)	1.1 ± 0.3 (3)	4.4 ± 0.6 (3)	2.7 ± 0.5 (3)	2.0 ± 0.5 (3)	1.9 ± 0.1 (3)	0.8 ± 0.1 (3)	2.0 ± 0.9 (3)	1.7 ± 0.6 (3)
C _{TM60}	0.8 ± 0.2 (3)	1.6 ± 0.5 (3)	2.7 ± 0.7 (3)	2.0 ± 0.9 (3)	0.8 ± 0.2 (3)	1.3 ± 0.1 (3)	0.8 ± 0.3 (3)	0.9 ± 0.3 (3)	0.8 ± 0.3 (3)	2.3 ± 0.6 (3)	1.6 ± 0.3 (3)	1.2 ± 0.5 (3)	1.0 ± 0.2 (3)	1.1 ± 0.2 (3)	1.1 ± 0.4 (3)	0.7 ± 0.3 (3)
C _{TM7}	1.3 ± 0.1 (3)	5.2 ± 0.2 (3)	5.1 ± 0.4 (3)	5.2 ± 0.4 (3)	$1.3 \pm 0.4 (3)$	2.1 ± 0.9 (3)	1.5 ± 0.3 (3)	2.1 ± 0.6 (3)	3.2 ± 0.5 (3)	4.5 ± 0.5 (3)	4.3 ± 0.8 (3)	2.5 ± 0.8 (3)	6.0 ± 0.8 (3)	1.2 ± 0.4 (3)	1.2 ± 0.1 (3)	0.8 ± 0.1 (3)
C _{TM1/7}	1.1 ± 0.1 (3)	2.5 ± 0.8 (3)	3.1 ± 0.9 (3)	3.1 ± 0.6 (3)	1.4 ± 0.3 (4)	1.1 ± 0.2 (3)	1.4 ± 0.2 (3)	0.8 ± 0.1 (3)	1.6 ± 0.4 (3)	2.8 ± 0.6 (3)	2.3 ± 0.6 (3)	1.5 ± 0.5 (3)	3.0 ± 0.7 (3)	1.5 ± 0.4 (3)	1.1 ± 0.1 (3)	0.9 ± 0.1 (3)
C _{TM2/3}	0.9 ± 0.4 (3)	0.9 ± 0.3 (3)	0.9 ± 0.4 (3)	1.2 ± 0.4 (3)	1.0 ± 0.6 (3)	1.1 ± 0.3 (3)	1.1 ± 0.3 (3)	1.0 ± 0.5 (3)	1.0 ± 0.3 (3)	1.4 ± 0.7 (3)	1.0 ± 0.1 (3)	1.1 ± 0.3 (3)	1.2 ± 0.5 (3)	1.1 ± 0.5 (3)	0.9 ± 0.2 (3)	1.0 ± 0.4 (3)
C _{TM2/4}	2.5 ± 0.5 (5)	38.8 ± 4.2 (5)	43.2 ± 15.6 (3)	34.9 ± 9.5 (3)	12.6 ± 5.8 (3)	8.2 ± 1.7 (5)	30.9 ± 4.9 (5)	24.7 ± 2.9 (5)	6.0 ± 1.4 (5)	26.6 ± 5.8 (5)	24.2 ± 4.2 (5)	18.4 ± 5.0 (5)	21.6 ± 3.2 (5)	9.5 ± 2.4 (5)	2.2 ± 0.3 (3)	22.0 ± 4.6 (3)
C _{TM2/5}	2.7 ± 0.5 (5)	45.2 ± 8.1 (5)	33.3 ± 8.6 (3)	37.2 ± 7.8 (3)	$11.7 \pm 2.0(3)$	15.7 ± 3.5 (5)	42.8 ± 5.2 (5)	35.5 ± 4.1 (5)	7.9 ± 1.5 (5)	31.8 ± 3.6 (5)	32.9 ± 5.4 (5)	12.2 ± 2.9 (5)	11.2 ± 1.3 (5)	$11.3 \pm 1.7 (5)$	3.1 ± 0.4 (3)	26.4 ± 2.3 (3)
C _{TM3/6}	1.2 ± 0.4 (3)	0.8 ± 0.3 (3)	0.7 ± 0.2 (3)	1.3 ± 0.4 (3)	0.9 ± 0.1 (3)	1.1 ± 0.4 (3)	1.2 ± 0.2 (3)	0.8 ± 0.2 (3)	1.0 ± 0.3 (3)	1.0 ± 0.2 (3)	0.8 ± 0.1 (3)	0.9 ± 0.3 (3)	0.9 ± 0.1 (3)	1.0 ± 0.2 (3)	1.4 ± 0.3 (3)	1.0 ± 0.3 (3)
C _{TM4/5}	2.0 ± 0.5 (5)	41.2 ± 9.1 (5)	18.4 ± 2.7 (3)	26.7 ± 5.1 (3)	6.2 ± 2.2 (3)	8.9 ± 2.7 (5)	47.4 ± 11.4 (5)	$26.2 \pm 7.4(5)$	7.4 ± 2.1 (5)	30.0 ± 7.3 (5)	30.1 ± 9.0 (5)	16.1 ± 5.1 (5)	13.8 ± 2.7 (5)	7.3 ± 0.9 (5)	2.1 ± 0.5 (3)	23.5 ± 6.8 (3)
C _{TM2/4/5}	$1.6 \pm 0.4 (5)$	50.0 ± 12.0 (5)	12.8 ± 2.4 (3)	43.3 ± 3.7 (3)	2.4 ± 0.8 (3)	2.8 ± 0.5 (5)	50.9 ± 12.1 (5)	29.1 ± 7.3 (5)	5.2 ± 1.7 (5)	47.6 ± 13.1 (5)	$40.7 \pm 10.2 (5)$	32.2 ± 11.4 (5)	10.3 ± 1.5 (5)	5.0 ± 1.0 (5)	1.9 ± 0.2 (3)	4.4 ± 1.2 (3)
C _{TM2/3/4/5}	0.4 ± 0.1 (3)	0.3 ± 0.1 (3)	0.4 ± 0.2 (3)	0.3 ± 0.1 (3)	0.5 ± 0.1 (3)	0.6 ± 0.3 (3)	0.4 ± 0.1 (3)	0.3 ± 0.1 (3)	0.9 ± 0.6 (3)	0.6 ± 0.2 (3)	0.4 ± 0.2 (3)	0.3 ± 0.1 (3)	0.2 ± 0.1 (3)	0.8 ± 0.5 (3)	0.5 ± 0.1 (3)	0.3 ± 0.2 (3)
C _{TM2/4/5/6}	0.7 ± 0.2 (3)	0.6 ± 0.1 (3)	0.6 ± 0.2 (3)	0.8 ± 0.1 (3)	0.6 ± 0.2 (3)	0.8 ± 0.1 (3)	0.7 ± 0.2 (3)	0.5 ± 0.1 (3)	0.7 ± 0.4 (3)	0.7 ± 0.3 (3)	0.5 ± 0.1 (3)	0.7 ± 0.2 (3)	0.9 ± 0.3 (3)	0.7 ± 0.3 (3)	0.9 ± 0.2 (3)	0.9 ± 0.1 (3)
C _{TM1/2/4/5/7}	2.4 ± 0.1 (3)	3.4 ± 0.5 (3)	$1.9 \pm 0.6 (3)$	4.2 ± 0.7 (3)	2.9 ± 1.3 (3)	4.4 ± 1.5 (3)	2.4 ± 0.5 (3)	1.9 ± 0.6 (3)	3.3 ± 1.1 (3)	9.6 ± 2.7 (3)	25.3 ± 6.4 (3)	11.6 ± 2.3 (3)	13.9 ± 2.1 (3)	2.3 ± 0.8 (3)	4.2 ± 1.5 (3)	3.0 ± 1.3 (3)
C _{TM2-7}	0.6 ± 0.1 (3)	1.2 ± 0.1 (3)	1.2 ± 0.2 (3)	1.0 ± 0.2 (3)	0.9 ± 0.2 (3)	1.2 ± 0.3 (3)	1.2 ± 0.2 (3)	0.9 ± 0.1 (3)	1.3 ± 0.2 (3)	1.4 ± 0.2 (3)	1.6 ± 0.1 (3)	1.3 ± 0.2 (3)	0.9 ± 0.1 (3)	1.1 ± 0.1 (3)	1.3 ± 0.1 (3)	1.3 ± 0.2 (3)
C _{TM1-6}	1.3 ± 0.5 (3)	1.1 ± 0.5 (3)	1.2 ± 0.5 (3)	0.7 ± 0.3 (3)	1.2 ± 0.2 (3)	$1.3 \pm 0.6 (3)$	1.1 ± 0.4 (3)	1.0 ± 0.4 (3)	1.3 ± 0.4 (3)	1.3 ± 0.4 (3)	1.2 ± 0.4 (3)	1.1 ± 0.4 (3)	1.1 ± 0.5 (3)	0.8 ± 0.1 (3)	1.3 ± 0.3 (3)	0.8 ± 0.2 (3)
C _{TM2-6}	1.4 ± 0.3 (3)	1.3 ± 0.3 (3)	1.0 ± 0.4 (3)	1.4 ± 0.5 (3)	1.0 ± 0.3 (3)	1.4 ± 0.4 (3)	1.7 ± 0.5 (3)	1.2 ± 0.3 (3)	1.1 ± 0.4 (3)	1.6 ± 0.7 (3)	$1.3 \pm 0.6 (3)$	1.7 ± 0.6 (3)	1.1 ± 0.4 (3)	1.1 ± 0.2 (3)	1.3 ± 0.4 (3)	1.3 ± 0.7 (3)

Table S5. Functional characterization of rat TA₁, rat Taar4 and chimeras in HEK-293 cells using a cAMP accumulation assay.