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Figure S3. Codons which are overused in high-ribosomal occupancy windows are not ‘rare’ according to
genomic frequency. In some supplemental analyses we examine whether ‘rare’ codons slow ribosomes, and
define ‘rare’ as the quartile of those most infrequent codons in the genome. To ensure there is not a problem
with this definition, we have examined the difference in trends of codon usage at large between the two
windows. A. Tallies of all the codons used among the high-occupancy and low-occupancy windows within
each gene (including the preceding 5 codons before each window) were kept separately. We plotted the counts
for each codon in the high ribosomal occupancy window versus the counts in the low occupancy window, and
have color-coded the codons according to their frequency (see also Figure S6 for rare codons defined according
to their tAl). If all codons are used equally among the slowly-translated and quickly-translated windows then
the regression should give a slope of 1, with all datapoints falling precisely upon the regression line. Since we
have no prior expectation as to which variable should be on the x- vs. y-axis—we are simply testing for a slope
of 1—we used standardized major axis regression using the ‘smatr’ package in R. We performed standardized
major axis regressions of usage count(codon), high occupancy windows ~ usage count(codon), low occupancy
windows along with package tests that the slope of the line is 1 and that the intercept falls through 0. When we
consider only those codons within the lowest quartile of frequency values, we find that the resulting regression
has a slope not significantly different from one (P = 0.51) and an intercept not significantly different from 0 (P



= 0.68), indicating that on the whole the rarest (tAl) quartile of codons are used equally between the slow and
quickly-translated windows. Considering all codons, however, gives a regression with both a slope different
from 1 (P = 2.9¢-04) and an intercept different from O (P = 4.4e-04), corroborating that not rarer but more
common codons are used more in the high-occupancy windows. The line x = y is plotted just as a visual aid. B.
An examination of the residuals from part A. Those codons which lie more than ~2 standard deviations away
from the regression line are not from the rare end of the frequency spectrum but do tend to encode positively
charged residues. Horizontals at y = -1.96, +1.96 are plotted. C. Given that there will of course be constraints
on amino acid sequence, we also desire to investigate the differences in codon usage between the two windows
given the protein-coding composition of each. All of the total codon counts for each the low-occupancy
window (as described above) were divided by the total amino acid count encoded by that codon for the low-
occupancy window. The same normalization was performed for the high-occupancy windows, and the
normalized codon counts were then plotted against one another. Performing a standard major axis regression on
the amino acid-adjusted codon counts shows that codons, given the protein coding sequence, are on the whole
used proportionally between the quickly and slowly-translated windows. When we consider only those codons
within the lowest quartile of frequency values, we find that the resulting regression has a slope not significantly
different from one (P = 0.74) and an intercept not significantly different from 0 (P = 0.25), indicating that on
the whole the rarest (frequency) quartile of codons are used equally between the slow and quickly-translated
windows. Considering all codons, we find a slope significantly different from, but very close to, 1 (P =0.049;
slope 95% CI of 1.00, 1.08) and an intercept not different from 0 (P = 0.10). The line x = y is plotted as a visual
aid. D. The finding in part C that codons, on the whole, are not used significantly differently between the
slowly and quickly translated windows (given their respective amino acid compositions) is confirmed by an
analysis of the residuals. The one codon which is possibly significantly over-used is does not have a low
genomic frequency. Horizontals at y = -1.96, +1.96 are plotted.



