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SUPPLEMENTARY METHODS 
 

An Alternative Empirical Method to Determine Rates of Type I Error 

Probability.  Suppose that independent tests of the same type are applied e.g. 

allelic frequencies for m SNPS are compared between cases and controls; 

denote Pi the P-value for the i-th hypothesis, i=1,2,…,m. Under the common null 

hypothesis, P1, P2,…,Pm  is a random sample of size m following  a U(0,1) 

distribution. Let V be a random variable with cumulative distribution function (cdf) 

F, and V(m) = max{V1, V2,…,Vm} be the maximum in a random sample of size m. 

The exact distribution of V(m)  is given by: 

P(V(m) < t) = {F(t)}m                (1) 

(Casella & Berger, 2001), Note that if F is unknown, calculation of (1) is 

impossible. Using asymptotic theory, we used the alternative method described 

by Serfling (1990, pp. 89): as  (e.g., several hundred thousands of tests 

are performed), seems intuitive to derive an empirical test to evaluate significant 

P-values for a fixed type I error probability .Thus far, consider the random 

variable:  

Dm = (V(m) -am)/bm                  (2) 

for some constants: {am} and {bm}, the limiting distribution of (2) has one of three 

forms (Serfling, 1980; pp. 89).  Since V1=-log(P1), V2=-log(P2),…, Vm=-log(Pm) ~ 

Exponential (1) (Devroye, 1986), by choosing am= log(m) and bm=1 it follows that  

P(V(m) –log(m) < t)   exp{-exp(-t)},                    (3) 

(Serfling, 1980; pp. 90). Now, let tc be the critical value, e.g.  

P(V(m) –log(m) < tc) =                     (4) 



If (3) and (4) are combined we have:  

tc =-log(-log(1- ))                            (5) 

Thus far, those P-values for which the transformation h(x)=-log(-log(1-x)) is 

greater than (4) are said to be significant. We implemented this procedure in R 

(R Development Core Team, 2011), considering different scenarios, e.g. different 

n values for cases and controls, markers and number of steps, and it was applied 

to the P-values generated by our pbGWAS strategy. Results are presented in 

Supplementary Figures 4-8, and Supplementary Table 1.



SUPPLEMENTARY FIGURES. 

 
Supplementary Figure 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scatter plots, correlation analyses, and histograms for the allele frequencies (AFs) 

obtained for two technical replicates using our pbGWAS strategy. Panel A depicts the 

results for the group of cases and B for the controls. In there, dots represent estimated 

AFs for each SNP; the x-axis corresponds to the AFs for the first replicate and the y-axis 

for the second replicate. Vertical (top) and horizontal (right) bars correspond to the 

histograms for the AFs in Pools 1 and 2, respectively. Comparison of the AF density 

distribution functions within each group using R (R Development Core Team, 2011) and 

the sm package (Bowman & Azzalini, 2010) with B=100 replicates shows that these are 

statistically equivalent (cases: P=0.36; controls: P=0.11). 



Supplementary Figure 2 
 

 
Quantile-quantile plots for observed versus expected FDR-corrected –log10(P) values for 

each of eight pairs (from A to H, respectively) of DNA pools generated via bootstrap as 

described in our pbGWAS strategy. In these plots, dots represent the –log10(P) values 

for 287,368 single nucleotide polymorphisms (SNPs); green dots correspond to those 

SNPs for which the –log10(P) is greater than four, e.g., P<10-4.FDR = False Discovery 

Rate. 



Supplementary Figure 3 
 

 
Quantile-quantile plots for observed versus expected FDR-corrected –log10(P) values 

after combining the P-values from (A) steps 1 to 2, (B) 1 to 3, (C) 1 to 4, (D) 1 to 5, (E) 1 

to 6, (F) 1 to 7 and (G) 1 to 8 using the Stouffer’s method as described in our pbGWAS 

strategy (Figure 1). Abbreviations and conventions as in Supplementary Figure 2. 



Supplementary Figure 4 
 

 
 

Contour plots for rejection rates of H0 for allele frequencies that do not differ between 

cases and controls when a pbGWAS strategy is used; m=1,000 SNPs. Stouffer’s method 

was used to combine the P-values (see Materials and Methods and Figure 1 of the main 

manuscript) from (A) step 1, (B) 1 to 2, (C) 1 to 3, (D) 1 to 4, (E) 1 to 5, (F) 1 to 6, (G) 1 

to 7 and (H) 1 to 8. The x and y axes represent the total number of DNA samples 

available from cases and controls, respectively. The type I error probability was fixed at  

α=0.05.. High rejection rates are represented in red. 



Supplementary Figure 5 
 

 
 

Contour plots for rejection rates of H0 for allele frequencies that do not differ between 

cases and controls when a pbGWAS strategy is used; m=10,000 SNPs. Stouffer’s 

method was used to combine the P-values (see Materials and Methods and Figure 1 of 

the main manuscript) from (A) step 1, (B) 1 to 2, (C) 1 to 3, (D) 1 to 4, (E) 1 to 5, (F) 1 to 

6, (G) 1 to 7 and (H) 1 to 8. The x and y axes represent the total number of DNA 

samples available from cases and controls, respectively. The type I error probability was 

fixed at α=0.05. High rejection rates are represented in red. 



Supplementary Figure 6 
 

 
 
Contour plots for rejection rates of H0 for allele frequencies that do not differ between 

cases and controls when a pbGWAS strategy is used; m=100,000 SNPs. Stouffer’s 

method was used to combine the P-values (see Materials and Methods and Figure 1 of 

the main manuscript) from (A) step 1, (B) 1 to 2, (C) 1 to 3, (D) 1 to 4, (E) 1 to 5, (F) 1 to 

6, (G) 1 to 7 and (H) 1 to 8. The x and y axes represent the total number of DNA 

samples available from cases and controls, respectively. The type I error probability was 

fixed at  α=0.05. High rejection rates are represented in red. 



Supplementary Figure 7 
 

 
 

Contour plots for rejection rates of H0 for allele frequencies that do not differ between 

cases and controls when a pbGWAS strategy is used; m=300,000 SNPs. Stouffer’s 

method was used to combine the P-values (see Materials and Methods and Figure 1 of 

the main manuscript) from (A) step 1, (B) 1 to 2, (C) 1 to 3, (D) 1 to 4, (E) 1 to 5, (F) 1 to 

6, (G) 1 to 7 and (H) 1 to 8. The x and y axes represent the total number of DNA 

samples available from cases and controls, respectively. The type I error probability was 

fixed at α=0.05. High rejection rates are represented in red. 



Supplementary Figure 8 
 

 
 

Contour plots for rejection rates of H0 for allele frequencies that do not differ 

between cases and controls when a pbGWAS strategy is used; m=500,000 

SNPs. Stouffer’s method was used to combine the P-values (see Materials and 

Methods and Figure 1 of the main manuscript) from (A) step 1, (B) 1 to 2, (C) 1 

to 3, (D) 1 to 4, (E) 1 to 5, (F) 1 to 6, (G) 1 to 7 and (H) 1 to 8. The x and y axes 

represent the total number of DNA samples available from cases and controls, 

respectively. The type I error probability was fixed at α=0.05. High rejection rates 

are represented in red. 



Supplementary Figure 9.	  	  

	  
Cumulative distribution function of the heterozygosity values in cases and 
controls for individual genotyping (red dots) and DNA pooling (black dots).



Supplementary Figure 10. 
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Pattern of correlation that was found between gene frequencies estimated by DNA pooling and defined by individual 
genotyping for cases. 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Figure 11. 
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Pattern of correlation that was found between gene frequencies estimated by DNA pooling and defined by individual 
genotyping for controls. 
 



Supplementary Table 1. Simulation-based H0 rejections rates when no difference in the allele frequencies between 
cases and controls is present. For calculation purposes,Type I error probability was fixed at  α=0.05.. 
 

Number of 
SNPs 

DNA samples Rejection Rate of H0 in pbGWAS 
Cases Controls S1 S1-2 S1-3 S1-4 S1-5 S1-6 S1-7 S1-8 

100,000 20 20 0.0123 0.0238 0.0268 0.0300 0.0316 0.0335 0.0346 0.0353 
100,000 25 25 0.0241 0.0298 0.0337 0.0365 0.0396 0.0409 0.0426 0.0437 
100,000 30 30 0.0208 0.0260 0.0308 0.0355 0.0386 0.0411 0.0431 0.0445 
100,000 35 35 0.0285 0.0306 0.0352 0.0388 0.0423 0.0448 0.0468 0.0484 
100,000 40 40 0.0209 0.0299 0.0344 0.0373 0.0400 0.0430 0.0450 0.0471 
100,000 45 45 0.0266 0.0290 0.0341 0.0384 0.0423 0.0456 0.0476 0.0494 
100,000 50 50 0.0208 0.0271 0.0344 0.0373 0.0409 0.0440 0.0465 0.0488 
100,000 55 55 0.0251 0.0310 0.0347 0.0399 0.0492 0.0460 0.0485 0.0509 
300,000 20 20 0.0123 0.0241 0.0271 0.0301 0.0319 0.0336 0.0346 0.0354 
300,000 25 25 0.0241 0.0299 0.0337 0.0363 0.0395 0.0408 0.0425 0.0436 
300,000 30 30 0.0208 0.0265 0.0313 0.0357 0.0385 0.0408 0.0426 0.0441 
500,000 20 20 0.0123 0.0234 0.0265 0.0296 0.0316 0.0334 0.0348 0.0356 
500,000 25 25 0.0241 0.0299 0.0336 0.0363 0.0395 0.0408 0.0425 0.0436 

 



 
Supplementary Table 2. number of DNA samples used in each step of the pbGWAS strategy that also were individually 
genotyped 
 

Phenotype Pool 
1 2 3 4 5 6 7 8 

EOAD 18 18 17 20 16 18 18 21 
LOAD 15 15 16 16 14 14 15 16 
Total 33 33 33 36 30 32 33 37 

 
Supplementary Table 3. Estimated linear correlation coefficients (ρ) and 95% confidence intervals (CI) when the 
heterozygosity values obtained with DNA pooling and individual genotyping for EOAD and LOAD patients are plotted 
against each other. 
 

Pool Cases   Controls 
ρ 95% CI   ρ 95% CI 

1 0.6434 (0.6412, 0.6456)   0.6412 (0.6390, 0.6433) 
2 0.6480 (0.6459, 0.6502)   0.6130 (0.6106, 0.6153) 
3 0.6352 (0.6330, 0.6374)   0.6407 (0.6385, 0.6429) 
4 0.6458 (0.6436, 0.6480)   0.6520 (0.6498, 0.6541) 
5 0.6408 (0.6386, 0.6430)   0.6202 (0.6179, 0.6224) 
6 0.6515 (0.6493, 0.6536)   0.5994 (0.5970, 0.6017) 
7 0.6558 (0.6537, 0.6579)   0.6448 (0.6426, 0.6469) 
8 0.6393 (0.6371, 0.6415)   0.6176 (0.6153, 0.6199) 
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