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1 Technical details of the proof

Regularity conditions for Theorem 1.

C1. There exist some θ1, α1 and α2 satisfying that EU12,i = 0, EB1i = 0 and EB2i = 0.

C2. EU12,i is second-order differentiable with respect to θ1, α1 and α2, and all the

derivatives are uniformly bounded in the neighborhood of θ1.

C3. The information matrices I, K1 and K2 are positively definite.

Proof of Theorem 1.

By the Taylor expansion, we have

0 =
1√
n

∑
i

S12,i(θ̂1, α̂1, α̂2)

=
1√
n

∑
i

S12,i(θ1, α1, α2) +

(
1

n

∑
i

∂

∂θT1
S12,i(θ1, α1, α2)

)
√
n
(
θ̂1 − θ1

)
+

(
1

n

∑
i

∂

∂αT
1

S12,i(θ1, α1, α2)

)
√
n (α̂1 − α1)

+

(
1

n

∑
i

∂

∂αT
2

S12,i(θ1, α1, α2)

)
√
n (α̂2 − α2) + op(1). (1)

By the law of large numbers, − 1
n

∑
i

∂
∂θT1

S12,i(θ1, α1, α2)
a.s→ I, − 1

n

∑
i

∂
∂αT

1
S12,i(θ1, α1, α2)

a.s→

J1, and − 1
n

∑
i

∂
∂αT

2
S12,i(θ1, α1, α2)

a.s→ J2. Then
√
n (α̂1 − α1) and

√
n (α̂2 − α2) can be
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written in the form of their influence functions:

√
n (α̂1 − α1) =

1√
n

∑
i

K−1
1 B1i + op(1), (2)

√
n (α̂2 − α2) =

1√
n

∑
i

K−1
2 B2i + op(1) (3)

Plugging into (1) the influence functions (2) and (3), as well as the almost sure convergence

components, we have

0 =
1√
n

∑
i

U12,i(θ1, α1, α2)− I
√
n
(
θ̂1 − θ1

)
− 1√

n

∑
i

[
J1K

−1
1 B1i + J2K

−1
2 B2i

]
+ op(1)

Hence the influence functions for
√
n
(
θ̂1 − θ1

)
is

√
n
(
θ̂1 − θ1

)
=

1√
n

∑
i

I−1Qi + op(1),

which completes the proof.

Proof of Lemma 1.
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For the influence function of Ĝ−1
0 (1− t), note that

0 =
1√
n

∑
i

S5i(ŝ, θ̂1, α̂1, α̂2)

=
1√
n

∑
i

S5i(s, θ1, α1, α2) +

(
1

n

∑
i

∂

∂s
S5i(s, θ1, α1, α2)

)
√
n (ŝ− s)

+

(
1

n

∑
i

∂

∂θT1
S5i(θ1, α1, α2)

)
√
n
(
θ̂1 − θ1

)
+

(
1

n

∑
i

∂

∂αT
1

S5i(θ1, α1, α2)

)
√
n (α̂1 − α1)

+

(
1

n

∑
i

∂

∂αT
2

S5i(θ1, α1, α2)

)
√
n (α̂2 − α2) + op(1)

=
1√
n

∑
i

S5i(s, θ1, α1, α2) +

(
∂

∂s
ES5i(s, θ1, α1, α2)

)√
n (ŝ− s)

+

(
∂

∂θT1
ES5i(θ1, α1, α2)

)∑
i

I−1Qi +

(
∂

∂αT
1

ES5i(θ1, α1, α2)

)∑
i

K−1
1 B1i

+

(
∂

∂αT
2

ES5i(θ1, α1, α2)

)∑
i

K−1
2 B2i + op(1).

The second equality comes from the Taylor expansion; the third equality comes from the

law of large numbers and the influence function of θ̂1, α̂1 and α̂2. Some rearrangements

give us the final expression of A1i:

A1i(t) =

(
− ∂

∂s
ES5i

)−1 [
S5i +

(
∂

∂θT1
ES5i

)
I−1Qi +

(
∂

∂αT
1

ES5i

)
K−1

1 B1i

+

(
∂

∂αT
2

ES5i

)
K−1

2 B2i

]
.

The influence function for A2i is obtained using exactly the same techniques.

Proof of Theorem 2.

Denote u = σ(x,0;γ)
σ(x,1;γ)

G−1
0 (1− t) + µ(x,0;β)−µ(x,1;β)

σ(x,1;γ)
, which is also referred to as the “place-

ment value” in some literatures. This is interpreted as the standardized test result
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for cases to the control distribution. Replacing β, γ and G−1
0 with the estimated ver-

sion yields the estimated placement value û. Note that
√
n
(
R̂OCx(t)−ROCx(t)

)
=

√
n (G1(u)−G1(û))−

√
n
(
Ĝ1(û)−G1(û)

)
. The first part can be further written as the

influence function of β̂, γ̂ and Ĝ−1
0 :

√
n (G1(u)−G1(û)) = G′

1(u)
√
n (u− û) + op(1)

= G′
1(u)

[
∂u

∂θT1

√
n
(
θ1 − θ̂1

)
+

∂u

∂s

√
n (s− ŝ)

]
+ op(1)

= − 1√
n

∑
i

G′
1(u)

[
∂u

∂θT1
I−1Qi +

∂u

∂s
A1i(t)

]
+ op(1).

By the uniform law of large numbers, the second term can be expresses as the influence

function of Ĝ1:

√
n
(
Ĝ1(û)−G1(û)

)
=

√
n
(
Ĝ1(u)−G1(u)

)
+ op(1)

=
1√
n

∑
i

A2i(u) + op(1).

Hence we have

√
n
(
R̂OCx(t)−ROCx(t)

)
= − 1√

n

∑
i

{
G′

1(u)

[
∂u

∂θT1
I−1Qi +

∂u

∂s
A1i(t)

]
+ A2i(u)

}
+op(1),

and the asymptotic variance is given by

Ω2 = var

{
G′

1(u)

[
∂u

∂θT1
I−1Qi +

∂u

∂s
A1i(t)

]
+ A2i(u)

}
.

Proof of Corollary 1.

(1) When ρ̂i is estimated with
√
n consistency, it suffices to prove that the partial

derivative of Ski with respect to α2 has zero expectation. Note that

∂

∂αT
2

Ski =
∂

∂αT
2

(
Vi

πi

Uki +

(
1− Vi

πi

)
EDi|Ti,Xi

Uki

)
=

[
−Vi

π2
i

(
Uki − EDi|Ti,Xi

Uki

)] ∂πi

∂αT
2

.
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Conditional on Vi, Uki−EDi|Ti,Xi
Uki has zero expectation if the disease model is correctly

specified.

(2) When π̂i is estimated with
√
n consistency, it suffices to prove that the partial

derivative of Ski with respect to α1 has zero expectation. Similarly we can write out the

partial derivative as

∂

∂αT
1

Ski =
∂

∂αT
1

(
Vi

πi

Uki +

(
1− Vi

πi

)
EDi|Ti,Xi

Uki

)
=

(
1− Vi

πi

)
∂

∂αT
1

EDi|Ti,Xi
Uki.

As the verification model is correctly specified, 1 − Vi

πi
has zero expectation, and hence

∂
∂αT

1
Ski has zero expectation.

2 Additional simulation results

We conduct further simulations to study the efficiency of the three proposed estimators.

The proposed estimators are also compared with the counterparts with the true selection

and disease probability π and ρ. We consider a total of eight estimators:

(1) DR1: the DR estimator with both estimated π̂ and ρ̂.

(2) DR2: the DR estimator with estimated ρ̂ and known π.

(3) DR3: the DR estimator with estimated π̂ and known ρ.

(4) DR4: the DR estimator with both known π and ρ.

(5) IPW1: the IPW estimator with estimated π̂.

(6) IPW2: the IPW estimator with known π.

(7) IB1: the IB estimator with estimated ρ̂.
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(8) IB2: the IB estimator with known ρ.

The sample size is taken to be n = 1000, and the parameters are the same as in

simulation one. The results are summarized in Table 1. The DR1 estimator serves as the

benchmark to compute the relative efficiency. Obviously DR2, DR3 and DR4 estimators

are close to DR1 estimator and the relative efficiency is close to 1. This confirms the

statement in Corollary 1: when both selection and disease models are correctly specified,

estimating the two probabilities π and ρ does not introduce extra variability in the ROC

curve estimation. We note that IPW estimator is only about 26-75% efficient as compared

to the DR1 estimator, no matter whether π is estimated or known. The IB1 estimator is

about 5-28% more efficient than DR1 estimator. This moderate improvement of efficiency

is subject to the risk of mis-specification of the disease model, and hence is less robust

than the DR1 estimator. It is not surprising that IB2 estimator is much more efficient

than the DR1 estimator, because knowing the disease probability indeed provides much

information.
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