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Supplementary Figure 1 

 

A comparison of P values for the algorithms described in Table 1.  Each point in a plot 

shows the paired negative loge P values of association for a particular SNP from two algorithms.  

Dashed lines show the genome-wide significance threshold (5 × 10
-7

). Green points indicate 

SNPs called significant by the algorithm shown on the y axis but not the algorithm shown on the 

x axis, whereas magenta points indicate the opposite.  The algorithm with the lower value for GC 

(see Table 1) is shown on the x axis. 
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Supplementary Table 1

SNPs found to be significant by at least one of the algorithms in Table 1.  P values that reach genome wide

significance (greater than 5E-7) are shown in bold.  The last column shows SNP associations validated by a

large-sample meta analysis (Franke et al ., Nature Genetics  42, 1118-25, 2010) or reported as validated in the

original Wellcome Trust paper (Wellcome Trust Consortium, Nature 447, 661-78, 2007).  The major histocompatibility 

complex (MHC) region is known to be associated with Crohn's diease (e.g ., Cariappa et al., Gut  43, 210-5, 1998).

Horizontal lines separate loci.  False positives and false negatives are highlighted in purple and blue respectively.

snp chr position

FaST-LMM 

Select

FaST-LMM 

all

FaST-LMM 

orig 310

FaST-LMM 

orig 4K Traditional validation

rs4655679 1 67599657 1.88E-12 1.95E-13 1.08E-15 5.60E-15 3.21E-11 WT paper, meta analysis

rs10789224 1 67605134 3.06E-12 8.09E-14 2.67E-15 8.83E-15 1.23E-11 WT paper, meta analysis

rs7539795 1 67609446 3.64E-07 1.38E-08 6.50E-09 1.18E-08 7.03E-07 WT paper, meta analysis

rs4655684 1 67611772 1.36E-11 4.35E-13 1.51E-14 6.57E-14 5.71E-11 WT paper, meta analysis

rs6588245 1 67611799 2.87E-07 1.07E-08 4.92E-09 8.96E-09 5.54E-07 WT paper, meta analysis

rs17375018 1 67655147 2.49E-12 2.24E-14 8.85E-16 3.37E-15 3.69E-12 WT paper, meta analysis

rs6664119 1 67655895 2.73E-07 6.33E-09 3.75E-09 7.02E-09 3.67E-07 WT paper, meta analysis

rs11209018 1 67667291 3.63E-11 2.81E-13 1.04E-13 5.77E-13 3.41E-11 WT paper, meta analysis

rs11805303 1 67675516 2.36E-21 4.65E-23 5.78E-25 1.09E-23 9.74E-21 WT paper, meta analysis

rs41396545 1 67689608 3.31E-18 9.83E-20 2.30E-21 6.43E-20 5.64E-17 WT paper, meta analysis

rs2201841 1 67694202 3.50E-18 8.03E-19 6.25E-21 7.77E-20 1.13E-16 WT paper, meta analysis

rs10489628 1 67704107 1.00E-07 4.01E-08 4.17E-09 2.30E-08 1.86E-06 WT paper, meta analysis

rs11209033 1 67744500 2.43E-13 2.03E-14 5.52E-16 1.62E-15 1.36E-12 WT paper, meta analysis

rs6660226 1 67744601 2.24E-12 1.39E-13 4.11E-15 3.06E-14 5.29E-12 WT paper, meta analysis

rs12141431 1 67747023 7.08E-11 4.84E-12 4.44E-13 1.48E-12 3.59E-10 WT paper, meta analysis

rs12119179 1 67747415 1.13E-13 6.52E-15 2.07E-16 7.94E-16 4.39E-13 WT paper, meta analysis

rs11209039 1 67751193 3.09E-12 2.33E-13 9.15E-15 5.98E-14 9.06E-12 WT paper, meta analysis

rs6679677 1 114303808 3.03E-11 1.56E-12 2.06E-15 2.65E-14 2.09E-11 meta analysis

rs2488457 1 114415368 1.26E-06 1.12E-06 1.26E-07 3.05E-07 1.10E-05 meta analysis

rs6688532 1 172892952 1.25E-04 1.16E-05 2.05E-07 4.28E-07 4.09E-05

rs12035082 1 172898377 9.33E-05 6.20E-06 1.46E-07 2.51E-07 2.20E-05

rs12037606 1 172898402 9.45E-05 6.63E-06 1.37E-07 2.39E-07 2.35E-05

rs7522462 1 200881595 1.85E-05 4.75E-06 1.81E-07 1.67E-06 2.28E-05

rs906805 2 28604879 1.67E-06 4.98E-08 1.38E-08 3.02E-08 1.30E-07

rs1437972 2 100987387 4.57E-02 1.17E-02 4.98E-07 5.55E-05 1.56E-02

rs10210302 2 234158839 7.99E-14 9.34E-15 1.01E-15 3.06E-16 2.22E-13 WT paper, meta analysis

rs6752107 2 234161448 1.64E-13 2.19E-14 2.63E-15 8.15E-16 5.26E-13 WT paper, meta analysis

rs6431654 2 234161769 4.93E-14 8.30E-15 9.88E-16 3.05E-16 1.96E-13 WT paper, meta analysis

rs3828309 2 234180410 2.88E-13 5.57E-14 7.77E-15 2.21E-15 1.36E-12 WT paper, meta analysis

rs3792106 2 234190740 3.69E-10 2.99E-11 2.45E-13 2.85E-13 4.25E-10 WT paper, meta analysis

rs9827708 3 49649989 1.05E-06 1.29E-06 1.21E-07 4.43E-07 2.55E-05 WT paper, meta analysis

rs11718165 3 49696797 1.28E-06 1.63E-06 1.82E-07 5.10E-07 3.06E-05 WT paper, meta analysis

rs9858542 3 49701983 2.09E-07 3.02E-07 2.83E-08 9.39E-08 5.96E-06 WT paper, meta analysis

rs35389 5 33954880 4.44E-03 7.30E-05 1.96E-14 5.30E-10 9.05E-05

rs348621 5 40286967 2.32E-06 4.58E-07 4.43E-07 4.84E-07 6.70E-06 WT paper, meta analysis

rs348566 5 40307979 7.68E-10 7.16E-11 3.93E-10 2.33E-10 1.37E-09 WT paper, meta analysis

rs7726744 5 40343276 5.06E-09 7.15E-10 3.66E-09 1.09E-09 1.72E-08 WT paper, meta analysis

rs10512734 5 40393605 8.61E-10 1.05E-11 2.84E-11 5.18E-11 3.52E-09 WT paper, meta analysis

rs16869934 5 40397352 2.50E-11 7.87E-13 1.44E-12 2.57E-12 3.04E-10 WT paper, meta analysis

rs17234657 5 40401509 3.39E-15 1.13E-17 3.06E-16 1.28E-16 1.03E-15 WT paper, meta analysis

rs9292777 5 40437948 8.03E-15 2.77E-17 1.05E-16 9.38E-17 1.67E-14 WT paper, meta analysis

rs10213846 5 40442869 1.00E-12 4.33E-14 1.12E-12 6.32E-13 3.56E-11 WT paper, meta analysis
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rs11957215 5 40445681 7.90E-13 3.55E-14 8.60E-13 5.93E-13 2.96E-11 WT paper, meta analysis

rs4957295 5 40447997 1.14E-12 2.79E-14 8.83E-13 6.07E-13 2.33E-11 WT paper, meta analysis

rs4957297 5 40455074 1.07E-12 4.58E-14 9.05E-13 6.64E-13 3.82E-11 WT paper, meta analysis

rs4957300 5 40463739 1.72E-12 9.68E-14 1.79E-12 1.27E-12 7.91E-11 WT paper, meta analysis

rs6871834 5 40480187 3.34E-12 1.58E-13 4.10E-12 2.64E-12 1.26E-10 WT paper, meta analysis

rs1505992 5 40498577 7.41E-09 3.95E-09 5.10E-09 1.57E-09 9.53E-07 WT paper, meta analysis

rs1553576 5 40509655 9.05E-08 4.49E-08 2.41E-08 1.31E-08 9.26E-06 WT paper, meta analysis

rs1553577 5 40510007 8.08E-08 4.02E-08 1.67E-08 1.02E-08 8.37E-06 WT paper, meta analysis

rs6896604 5 40516017 1.27E-07 7.53E-08 3.95E-08 2.34E-08 1.49E-05 WT paper, meta analysis

rs6866402 5 40517331 1.12E-07 6.51E-08 3.46E-08 2.01E-08 1.29E-05 WT paper, meta analysis

rs4957317 5 40517725 2.66E-08 1.89E-08 1.21E-08 6.19E-09 4.12E-06 WT paper, meta analysis

rs10941516 5 40522212 1.58E-06 3.46E-07 7.41E-07 3.88E-07 4.26E-05 WT paper, meta analysis

rs11750156 5 40561358 3.59E-08 4.47E-08 2.91E-08 1.37E-08 9.99E-06 WT paper, meta analysis

rs10055860 5 40569953 3.21E-08 3.64E-08 4.20E-08 1.66E-08 8.16E-06 WT paper, meta analysis

rs1122433 5 40578922 3.27E-08 3.35E-08 2.96E-08 1.30E-08 7.61E-06 WT paper, meta analysis

rs10473203 5 40606294 1.02E-07 1.05E-07 1.06E-07 3.96E-08 2.15E-05 WT paper, meta analysis

rs7714191 5 131341541 1.24E-07 2.77E-07 1.47E-06 4.66E-07 7.61E-05 WT paper, meta analysis

rs4705938 5 131694077 1.18E-08 3.26E-08 4.06E-07 1.13E-07 7.06E-06 WT paper, meta analysis

rs274552 5 131727346 8.68E-08 2.20E-07 9.79E-07 7.62E-07 4.29E-06 WT paper, meta analysis

rs274547 5 131731304 4.96E-08 1.32E-07 5.54E-07 4.19E-07 2.61E-06 WT paper, meta analysis

rs6596075 5 131742228 4.14E-08 1.16E-07 6.56E-07 5.28E-07 2.32E-06 WT paper, meta analysis

rs11744116 5 131779760 4.91E-07 4.08E-07 1.45E-07 6.00E-07 1.77E-05 WT paper, meta analysis

rs4540166 5 131779857 3.45E-07 2.30E-07 1.14E-07 4.13E-07 1.05E-05 WT paper, meta analysis

rs4371745 5 131779955 6.24E-07 3.27E-07 2.43E-07 7.49E-07 1.39E-05 WT paper, meta analysis

rs10077785 5 131801158 1.32E-08 1.55E-08 3.41E-09 1.48E-08 8.30E-07 WT paper, meta analysis

rs11949556 5 150229801 6.75E-05 4.62E-05 4.44E-07 2.07E-06 2.87E-04 meta analysis

rs11957134 5 150230950 1.61E-05 1.17E-05 1.91E-07 5.91E-07 4.27E-05 meta analysis

rs4958847 5 150239587 5.05E-05 4.04E-05 4.96E-07 1.88E-06 2.53E-04 meta analysis

rs1000113 5 150240076 1.36E-05 8.93E-06 1.26E-07 4.37E-07 3.27E-05 meta analysis

rs1428555 5 150257391 2.13E-05 1.94E-05 1.34E-07 7.27E-07 7.05E-05 meta analysis

rs11747270 5 150258867 2.59E-05 2.25E-05 1.24E-07 6.50E-07 8.18E-05 meta analysis

rs10041072 5 150259642 3.80E-05 2.93E-05 2.08E-07 9.61E-07 1.07E-04 meta analysis

rs3900064 5 150264414 5.22E-05 4.02E-05 4.03E-07 1.74E-06 1.46E-04 meta analysis

rs7759649 6 21470419 2.92E-07 7.11E-06 9.77E-06 3.42E-06 9.91E-06 meta analysis

rs2517646 6 30122575 2.56E-09 2.21E-09 3.06E-10 7.76E-10 1.69E-06 MHC region

rs3094055 6 30332146 4.04E-11 2.66E-10 4.40E-10 3.47E-10 1.21E-07 MHC region

rs3130649 6 30803254 2.36E-07 5.19E-07 6.18E-08 7.40E-08 7.40E-05 MHC region

rs3095350 6 30817866 6.45E-07 2.65E-06 4.79E-07 5.44E-07 2.99E-04 MHC region

rs2517524 6 31025713 1.12E-03 4.86E-05 1.02E-07 1.53E-06 4.83E-04 MHC region

rs13200022 6 31098957 4.14E-05 7.13E-06 7.84E-08 4.49E-07 4.49E-04 MHC region

rs6899874 6 31162328 5.46E-06 7.16E-07 1.07E-07 4.07E-07 1.04E-05 MHC region

rs6908994 6 31198709 3.77E-06 1.24E-06 1.18E-08 8.23E-08 2.72E-05 MHC region

rs4081552 6 31353689 1.22E-04 9.88E-05 2.12E-07 1.44E-06 8.48E-04 MHC region

rs2523467 6 31362930 9.28E-05 8.47E-05 2.44E-07 2.21E-06 1.51E-03 MHC region

rs3749946 6 31448862 1.35E-05 1.57E-06 2.79E-09 3.55E-08 9.07E-06 MHC region

rs9348876 6 31575276 4.29E-07 4.00E-08 1.50E-09 1.29E-08 2.88E-06 MHC region

rs9296009 6 32114515 5.11E-08 1.71E-07 4.85E-10 5.48E-09 3.57E-06 MHC region

rs9268403 6 32341473 7.69E-08 3.60E-08 8.23E-10 5.63E-09 2.27E-07 MHC region

rs9268429 6 32345052 8.20E-08 8.05E-08 2.90E-09 1.87E-08 5.43E-07 MHC region

rs9268480 6 32363844 5.39E-08 2.55E-08 5.32E-10 4.00E-09 1.55E-07 MHC region

rs10947261 6 32373232 1.30E-06 1.30E-06 1.63E-07 3.69E-07 1.05E-05 MHC region

rs3763307 6 32374622 7.01E-08 3.75E-08 7.92E-10 5.97E-09 2.41E-07 MHC region

rs9268557 6 32389305 7.33E-09 3.50E-09 3.33E-09 5.08E-09 1.93E-08 MHC region
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rs9268560 6 32389512 8.48E-08 5.46E-08 4.60E-07 4.01E-07 9.54E-08 MHC region

rs9268645 6 32408527 3.73E-11 1.30E-10 1.00E-09 6.80E-10 3.63E-09 MHC region

rs9273363 6 32626272 3.90E-16 9.13E-17 1.27E-19 5.31E-19 9.56E-15 MHC region

rs7775228 6 32658079 1.70E-12 1.33E-13 2.19E-15 2.93E-14 2.03E-12 MHC region

rs9469220 6 32658310 4.71E-14 7.52E-15 3.61E-17 3.01E-16 8.09E-13 MHC region

rs2647015 6 32664093 2.77E-08 7.52E-09 2.63E-10 1.72E-09 7.10E-08 MHC region

rs2858308 6 32670000 2.29E-08 2.69E-09 1.06E-10 6.00E-10 2.64E-08 MHC region

rs9275418 6 32670244 6.46E-13 7.76E-15 3.81E-16 1.48E-15 1.31E-12 MHC region

rs3916765 6 32685550 3.52E-18 1.22E-18 1.07E-21 3.63E-21 4.89E-14 MHC region

rs9275765 6 32689324 1.51E-10 1.11E-11 1.12E-13 5.69E-13 3.81E-09 MHC region

rs9275772 6 32689503 2.08E-10 2.13E-11 2.22E-13 1.05E-12 7.29E-09 MHC region

rs9275793 6 32690027 1.65E-10 1.36E-11 1.64E-13 7.95E-13 4.75E-09 MHC region

rs2227127 6 32711782 5.97E-06 4.78E-07 3.85E-07 6.05E-07 8.84E-06 MHC region

rs9276429 6 32712104 1.45E-08 2.63E-09 1.09E-11 7.08E-11 1.31E-07 MHC region

rs9276431 6 32712247 1.17E-08 2.25E-09 1.02E-11 6.57E-11 1.12E-07 MHC region

rs9276432 6 32712384 1.90E-08 3.31E-09 1.45E-11 9.73E-11 1.67E-07 MHC region

rs9276440 6 32714783 3.63E-07 8.15E-08 1.71E-09 6.15E-09 3.67E-06 MHC region

rs9276490 6 32718681 6.25E-07 1.67E-07 3.51E-09 1.17E-08 7.40E-06 MHC region

rs7768538 6 32729821 2.37E-08 4.75E-09 1.60E-11 1.15E-10 2.47E-07 MHC region

rs7453920 6 32730012 2.32E-08 4.53E-09 1.63E-11 1.19E-10 2.34E-07 MHC region

rs9296044 6 32736144 1.40E-06 5.22E-08 7.63E-10 6.14E-09 1.45E-06 MHC region

rs2071474 6 32782582 7.85E-06 8.69E-06 2.03E-07 4.01E-07 2.53E-04 MHC region

rs7740698 6 33904769 1.61E-04 5.51E-06 2.29E-07 8.09E-07 1.10E-05 MHC region

rs10485902 7 78121406 1.39E-04 1.15E-05 2.15E-07 5.74E-07 1.84E-05

rs2885560 7 78124424 1.98E-04 1.14E-05 4.51E-07 7.17E-07 1.84E-05

rs11144996 9 79271509 2.31E-05 6.60E-05 9.22E-09 4.97E-07 7.89E-05

rs10761659 10 64445564 2.71E-08 1.87E-07 9.07E-08 2.04E-07 2.46E-06 WT paper, meta analysis

rs224136 10 64470675 1.47E-07 3.73E-06 1.51E-04 3.01E-05 1.67E-05 WT paper, meta analysis

rs7095491 10 101274058 1.01E-07 1.97E-07 2.57E-08 3.42E-08 2.07E-06 WT paper, meta analysis

rs7078219 10 101274365 5.05E-07 5.38E-07 3.67E-08 7.55E-08 4.95E-06 WT paper, meta analysis

rs7081330 10 101274465 4.18E-07 4.62E-07 3.51E-08 6.94E-08 4.25E-06 WT paper, meta analysis

rs10883365 10 101287764 4.99E-08 2.23E-07 2.49E-08 3.16E-08 2.35E-06 WT paper, meta analysis

rs10883367 10 101287990 6.37E-08 3.00E-07 4.16E-08 4.97E-08 3.15E-06 WT paper, meta analysis

rs1548962 10 101289735 4.37E-08 1.87E-07 2.11E-08 2.70E-08 1.97E-06 WT paper, meta analysis

rs6584283 10 101290301 5.75E-07 1.34E-06 1.44E-07 1.86E-07 1.38E-05 WT paper, meta analysis

rs10883371 10 101292455 8.03E-08 3.15E-07 5.88E-08 7.36E-08 3.30E-06 WT paper, meta analysis

rs10501805 11 93391954 5.94E-06 5.66E-08 1.04E-06 5.07E-07 6.89E-08

rs6500315 16 50508101 7.52E-07 1.38E-08 1.47E-08 1.55E-08 2.06E-08 WT paper

rs7186163 16 50686557 1.25E-06 6.50E-08 3.11E-08 7.42E-08 1.44E-07 WT paper

rs2066849 16 50687015 1.64E-06 1.60E-07 7.46E-08 1.55E-07 3.39E-07 WT paper

rs17221417 16 50739582 3.57E-16 1.76E-15 2.47E-13 2.73E-14 3.04E-14 WT paper

rs17312836 16 50741462 3.77E-07 2.24E-07 2.83E-07 3.36E-07 1.51E-06 WT paper

rs2066843 16 50745199 4.24E-16 1.63E-15 1.37E-13 1.79E-14 2.74E-14 WT paper

rs1861759 16 50745583 8.71E-07 3.02E-07 6.21E-07 6.80E-07 2.06E-06 WT paper

rs748855 16 50751398 2.65E-07 1.14E-07 2.62E-07 2.93E-07 7.80E-07 WT paper

rs3135499 16 50766127 1.68E-06 3.44E-07 1.51E-06 1.16E-06 2.66E-06 WT paper

rs8060598 16 50781802 7.65E-08 2.70E-08 2.88E-08 3.12E-08 2.29E-07 WT paper

rs7342715 16 50787483 6.40E-08 1.92E-08 1.13E-07 6.53E-08 9.69E-08 WT paper

rs3135503 16 50791250 1.28E-07 3.74E-08 2.76E-08 3.92E-08 3.14E-07 WT paper

rs2083798 17 44921897 8.84E-05 1.08E-05 1.07E-07 1.29E-06 6.74E-05

rs2083797 17 44921929 7.05E-05 1.47E-05 1.10E-07 1.46E-06 9.55E-05

rs2542151 18 12779947 4.97E-07 1.09E-07 8.53E-08 8.45E-08 4.24E-07 WT paper, meta analysis

rs16939895 18 12821903 3.12E-05 2.10E-06 2.02E-07 5.74E-07 6.96E-06 WT paper, meta analysis
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rs7234029 18 12877060 1.77E-05 5.82E-07 2.58E-08 9.52E-08 1.97E-06 WT paper, meta analysis

rs4807569 19 1123378 2.75E-07 4.02E-08 1.77E-08 2.99E-08 6.71E-08 meta analysis

rs2836753 21 40291187 1.01E-06 5.99E-07 3.01E-09 2.41E-08 2.30E-06

rs2836754 21 40291740 7.33E-07 5.01E-07 1.96E-09 1.88E-08 1.92E-06

rs2836757 21 40294024 1.66E-05 6.99E-06 2.19E-07 1.45E-06 2.29E-05
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Supplementary Methods 

The calibration of P values was assessed using the genomic control factor, GC
1,2

.  The value GC 

is defined as the ratio of the median observed to median theoretical test statistic.  When there is 

no signal in the data, a calibrated result corresponds to GC=1.0, and values of GC substantially 

greater than (less than) 1.0 are indicative of inflation (deflation).  

The Wellcome Trust Case Control Consortium (WTCCC) 1 data consisted of the SNP and 

phenotype data for seven common diseases: bipolar disorder (BP), coronary artery disease 

(CAD), hypertension (HT), Crohn's disease (CD), rheumatoid arthritis (RA), type-I diabetes 

(T1D), and type-II diabetes (T2D)
3
. Each phenotype group contained about 1,900 individuals. In 

addition, the data included a set of approximately 1,500 controls from the UK Blood Service 

Control Group (NBS). The data did not include a second control group from the 1958 British 

Birth Cohort (58C), as permissions for it precluded use by a commercial organization. Our 

analysis for the CD phenotype used data from the NBS group and the remaining six phenotypes 

as controls. We filtered SNPs as described by the WTCCC
3
, but in addition we excluded a SNP 

if either its minor-allele frequency was less than 1%, it was missing in greater than 1% of 

individuals, or its genetic distance was unknown. After filtering, 356,441 SNPs remained. Unlike 

the approach used by the WTCCC, we included non-white individuals and close family members 

to increase the potential for confounding and thereby better exercise the LMM. In total, there 

were 14,925 individuals across the seven phenotypes and control.  We concentrated our 

evaluations on Crohn’s disease, as inflation for that phenotype was the greatest (with linear 

regression). 

In Fig. 1 of the main text, runtimes without the algorithmic speedup in Supplementary Note 2 

were estimated under the assumption that the computations needed for each similarity matrix 

would take the same amount of time.  Memory use was measured with the speedup (except for 

the traditional algorithm) while testing 1000 SNPs, not atypical for parallel computation on a 

computer cluster.  When proximal contamination was avoided, a 2 centimorgan window was 

used. 

 

As we discussed in the main text, we carefully selected a subset of available SNPs to determine 

genetic similarity.  Others have explicitly used only a subset of available SNPs as covariates to 

correct for population structure
4
, and have included only a subset of SNP principal components 

that are predictive of phenotype so as to increase GWAS power
5,6

.  A similar notion of using 

only a select subset of SNPs to determine genetic similarity is emerging in the literature on 

estimation of heritability from LMMs
7,8

. 

We selected SNPs for determining genetic similarity by first sorting all available SNPs according 

to their linear-regression P values (in increasing order), and then evaluating the use of more and 

more SNPs in the genetic similarity matrix according to this ordering, until we found the first 

minimum in GC.  This approach is similar in spirit to one for selecting the number of principal 

components to adjust for population structure
9
.  We determined the first minimum in GC by a 

coarse grid search followed by a golden section search in the winning triplet interval.  For the 

Crohn’s GWAS, the grid search consisted of the SNP set sizes 0, 100, 200, 300, 400, and the 

golden section search consisted of the SNP set sizes 280, 340, 320, 290, and 310.   
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An alternative method for selecting SNPs would be to identify those SNPs that predict out-of-

sample data well.  Our experiments indicate, however, that calibration and power of FaST-

LMM-Select using SNPs selected by the first minimum in GC are similar to that using SNPs 

selected by out-of-sample prediction (e.g., using LASSO logistic regression). 

All analyses assumed a single additive effect of a SNP on the phenotype, using a 0/1/2 encoding 

for each SNP (indicating the number of minor alleles for an individual). Missing SNP data was 

mean imputed. A likelihood ratio test was used to compute P values.  Runtimes were measured 

on a 40-core Dell PowerEdge R910 machine with a 2.0 GHz clock and 256 GB of RAM. All 

algorithms used the MKL Core Math Library.   

A linear mixed model 
10–13

 is a linear model containing both observed variables X that are treated 

as fixed effects, and hidden variables  , that are treated as random effects and marginalized out.  

In GWAS, the SNP being tested is included into the model as a fixed effect. Other variables that 

are included as fixed effects are a constant bias term and any observed covariates that affect the 

phenotype.  Genetic relatedness, K, is incorporated into the model as a random effect.  Even 

though genetic relatedness itself is not observed, it is possible to estimate it from genetic 

markers.  The log likelihood of the LMM is 

      ∫ (         
  )   (      

  )     

Solving the integral over   leads to the well-known form of LMM log likelihood 

       (       
      

  )  

When K is given by WW
T
, the inner product between SNP vectors W, as is the case, for example, 

when K is given by the realized relationship matrix, the LMM log likelihood can be written as  

    (       
      

    )     ∫ (          
  )   (      

  )     

where   are the weights for features W in a linear regression, and  (      
  ) is the prior on 

those weights
14

. Thus, a LMM using K of this form is equivalent to a linear regression of the 

phenotype on the fixed effects   and  , where the weights   on   are marginalized over 

independent Normal distribtions with equal variance   
  (i.e., Bayesian linear regression)

14–18
.  

That is, the SNPs in   can be interpreted as a set of covariates whose effect sizes are uncertain. 

 

References 

1. Balding, D.J. A tutorial on statistical methods for population association studies. Nature 

Reviews Genetics 7, 781-91 (2006). 

2. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997-1004 

(1999). 

Nature Methods: doi:10.1038/2037



3. The Wellcome Trust Case Control Genome-wide association study of 14,000 cases of 

seven common diseases and 3,000 shared controls. Nature 447, 661-78 (2007). 

4. Setakis, E., Stirnadel, H. & Balding, D.J. Logistic regression protects against population 

structure in genetic association studies. Genome Research 16, 290-6 (2006). 

5. Novembre, J. & Stephens, M. Interpreting principal component analyses of spatial 

population genetic variation. Nature Genetics 40, 646-9 (2008). 

6. Lee, S., Wright, F.A. & Zou, F. Control of population stratification by correlation-selected 

principal components. Biometrics 67, 967-74 (2011). 

7. Golan, D. & Rosset, S. Accurate estimation of heritability in genome wide studies using 

random effects models. Bioinformatics 27, i317-i323 (2011). 

8. Lee, S.H. et al. Predicting unobserved phenotypes for complex traits from whole-genome 

SNP data. PLoS Genetics 4, e1000231 (2008). 

9. Tian, C., Gregersen, P.K. & Seldin, M.F. Accounting for ancestry: population substructure 

and genome-wide association studies. Human Molecular Genetics 17, R143-50 (2008). 

10. Yu, J. et al. A unified mixed-model method for association mapping that accounts for 

multiple levels of relatedness. Nature Genetics 38, 203-8 (2006). 

11. Kang, H.M. et al. Efficient control of population structure in model organism association 

mapping. Genetics 178, 1709-23 (2008). 

12. Astle, W. & Balding, D.J. Population Structure and Cryptic Relatedness in Genetic 

Association Studies. Statistical Science 24, 451-471 (2009). 

13. Zhang, Z. et al. Mixed linear model approach adapted for genome-wide association 

studies. Nature Genetics 42, 355-60 (2010). 

14. Hayes, B.J., Visscher, P.M. & Goddard, M.E. Increased accuracy of artificial selection by 

using the realized relationship matrix. Genetics Research 91, 47-60 (2009). 

15. Goddard, M. Genomic selection: prediction of accuracy and maximisation of long term 

response. Genetica 136, 245-57 (2009). 

16. Goddard, M.E., Wray, N.R., Verbyla, K. & Visscher, P.M. Estimating Effects and Making 

Predictions from Genome-Wide Marker Data. Statistical Science 24, 517-529 (2009). 

17. Rasmussen, C.E. & Williams, C.K.I. Gaussian Processes for Machine Learning (Adaptive 

Computation and Machine Learning series). (The MIT Press: Cambridge, MA, 2005). 

Nature Methods: doi:10.1038/2037



18. Neal, R.M. Monte Carlo Implementation of Gaussian Process Models for Bayesian 

Regression and Classification. (Toronto, 1997).at <http://arxiv.org/abs/physics/9701026>  

 

Nature Methods: doi:10.1038/2037



Supplementary Note 1: Experiments with Synthetic Data 

We explored the detrimental effects of dilution and proximal contamination using synthetic data 

so as to have access to ground truth. As in other papers examining correction for population 

structure in GWAS, SNPs were generated with the Balding-Nichols model
1
.  We used 3000 

individuals consisting of two populations in a ratio of six to four.  We chose 100 SNPs at random 

to be causal of the phenotype, half of which were differentiated between the two populations 

( ), and the other half not. We generated the phenotype by way of the LMM, using the 

100 causal SNPs in the genetic similarity matrix (RRM), no fixed effects, and parameters that 

were comparable to what has been seen on real data when using a traditional LMM approach
2
 

(genetic variance=0.1, residual variance=0.1). 

 

First we examined how circumventing dilution in the absence of proximal contamination 

improved calibration (the avoidance of inflation or deflation of the test statistic). In particular, we 

generated 100,000 SNPs that could potentially be used in the genetic similarity matrix (only 

some of which would be selected by our method). We varied the proportion of undifferentiated 

to differentiated SNPs (99:1, 9:1, and 0:1), with  for the differentiated SNPs. Although 

there is evidence that many SNPs are undifferentiated (e.g., the fact that Ancestry Informative 

Marker panels typically number in the hundreds
3–5

) we wanted to examine how spurious 

associations change under a range of scenarios. We used a test set comprising another 5,000 

independently generated SNPs, of which twenty percent were differentiated ( . We 

chose such a test set for three reasons: (1) we wanted the set to be constant across the different 

proportions of 99:1, 9:1 and 0:1, (2) we wanted a reasonably high proportion of SNPs to be 

differentiated as these are the ones that become spuriously associated due to confounding, and 

(3) we wanted the set to be independent from SNPs in the genetic similarity matrix so that 

proximal contamination could not occur. No SNP in the test set was causal, but we expected 

those that were differentiated to be spuriously associated with the phenotype if confounding was 

not corrected for, thus producing an inflated test statistic. We also expected that, with a smaller 

and smaller proportion of differentiated SNPs used in the RRM, dilution would lead to more and 

more inflation, because the differentiated SNPs were those that should be included in the matrix. 

Indeed, we saw these results (Fig. S1a). Only FaST-LMM-Select remained calibrated across all 

experimental conditions, whereas other approaches were calibrated only when all SNPs were 

differentiated (0:1).  As expected, calibration for the other approaches became worse as fewer 

SNPs were differentiated. Linear regression, not shown in the figure, yielded an extremely 

inflated test statistic (GC 

 

Next, we examined how dilution and proximal contamination together affected calibration and 

power. Here we limited ourselves to the 99:1 condition just described, using the same 100,000 

SNPs for possible inclusion in the RRM as in the previous experiment. The test set comprised 

the true causal SNPs as well as a 5,000 SNP subset of the 100,000 SNPs allowed in the genetic 

similarity matrix (including the 1,000 SNPs that were differentiated). When accounting for 

proximal contamination, we removed only the test SNP itself from the matrix (rather than using 

the 2 centimorgan rule that we apply on real data), because the synthetic SNPs are not in physical 

linkage disequilibrium.  FaST-LMM-Select used 250 SNPs in the matrix, as this is where the 

first minimum in GC occurred (Fig. S1b), and yielded GC0.99, comparable to GC from 

the ground truth matrix (using only the causal SNPs) that accounts for proximal contamination.   
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In contrast, when all SNPs were used in the matrix, GCwas strongly inflated as in the previous 

experiment.  Note that identity by state (IBS) genetic similarity performed similarly to the RRM, 

but does not have the required factored decomposition, which allows FaST-LMM to run most 

efficiently, nor is it directly amenable to the efficient algorithm for removing SNPs to account 

for proximal contamination (see Supplementary Note 2). Also note that using a random 

selection of SNPs in the matrix did not perform well, either with 4,000 SNPs, or 250 SNPs, the 

number used by FaST-LMM-Select.  (In our previous work
6
, we used equispaced SNPs, which 

corresponds to a random selection in these synthetic experiments.) 

 

Turning to power (Fig. S1c), when proximal contamination was avoided with the ground truth 

genetic similarity matrix, the LMM obtained nearly perfect power, whereas failing to avoid 

proximal contamination dramatically reduced power—no SNP signal remained.  In contrast, 

when all available SNPs where used in the matrix, proximal contamination had little effect on 

power, illustrating the interaction between dilution and proximal contamination.  FaST-LMM-

Select obtained the most power among methods that did not have access to the ground truth.  

Note that whether the RRM or IBS were used with all, or ground truth SNPs, power and GC 

were about the same.  Using a random selection of SNPs did not perform well, either with 4,000 

SNPs or 250 SNPs, the number used by FaST-LMM-Select.  Finally, note that although dilution 

and proximal contamination had opposite effects on GCso that models having both artifacts 

appeared to perform well in terms of calibration), both artifacts reduced power. 
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(a) 

 

 

(b) 
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(c) 

 

Figure S1.  Synthetic experiments showing effects of (a) dilution on calibration, (b) both 

dilution and proximal contamination on calibration and (c) both dilution and proximal 

contamination on power. SNPs were generated with the Balding-Nichols model
1
 for 3000 

individuals consisting of two populations in a ratio of six to four. We chose 100 SNPs at random 

to be causal of the phenotype, half of which were differentiated between the two populations 

( ), and the other half not. We generated the phenotype by way of the LMM, using the 

100 causal SNPs in the genetic similarity matrix, no fixed effects, and using parameters that were 

comparable to what has been seen on real data when using a traditional LMM approach
2
 (genetic 

variance=0.1, residual variance=0.1). The ―ground truth‖ approach refers to use of a LMM using 

the 100 causal SNPs, whereas ―all‖ refers to use of all SNPs in the similarity matrix. Annotations 

of  ―no contam‖ and ―contam‖ denote whether proximal contamination was or was not accounted 

for, respectively, except in panel (a) which is all ―no contam‖.  Panel (a) shows the effects of 

dilution without proximal contamination on calibration. We generated 100,000 SNPs that could 

be used to construct the similarity  matrix and varied the proportion of undifferentiated to 

differentiated SNPs (99:1, 9:1, and 0:1), with  for the differentiated SNPs.  The test set 

comprised another 5000 independently generated SNPs, of which twenty percent were 

differentiated ( .  ―FaST-LMM orig X‖ refers to the random selection of X SNPs for 

the similarity matrix, where X was the number used by FaST-LMM-Select. ―FaST-LMM orig 

4K‖ refers to using 4,000 randomly selected SNPs to estimate genetic similarity. (4,000 SNPs 

were used in the original publication
6
).  Panel (b) shows variations in GC when both dilution and 
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proximal contamination could occur.  We limited ourselves to the 99:1 condition from panel (a), 

and used the same 100,000 SNPs for possible inclusion in the similarity matrix. The test set 

comprised the true causal SNPs as well as a 5,000 SNP subset of the 100,000 SNPs allowed in 

the matrix (including the 1,000 that were differentiated). The genomic control factor GC is 

plotted as a function of number of SNPs used in the similarity matrix with our new approach 

when contamination was accounted for (line with triangular points).  A first minimum in GC 

occurs when 250 SNPs were used. ―FaST-LMM-Select X‖ refers to the use of the top X SNPs 

from linear regression to estimate genetic similarity.  Panel (c) shows the corresponding receiver 

operating characteristic curves and area under the curve (in parentheses) for the experiment in 

panel (b). An RRM was used for genetic similarity except for the conditions labeled ―IBS all‖ 

and ―IBS ground truth‖, wherein IBS was used with all available and ground truth SNPs, 

respectively. 
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Supplementary Note 2: An Efficient Algorithm for Avoiding

Proximal Contamination

As we have discussed in the main text, when using a linear mixed model (LMM) to test for

the association between a given SNP and phenotype, the SNPs used to construct the RMM should

exclude that test SNP and those that lie in close proximity to it. A nave approach to this problem

would involve a new spectral decomposition (SD) each time some SNPs were removed or added

back in to the computation for the RRM. As it is this SD that is the computational bottleneck of

LMM analysis, such an approach would not be feasible for testing for association on a genome-wide

scale [4]. Here, we present an algorithm that enables us to use just a single SD, and then cheaply add

corrective terms into the log likelihood to exactly account for having used the SD of the uncorrected

RRM. We prove that this result is the same as though we had actually computed the SD of the

corrected RRMs for each test. We thereby obtain an efficient algorithm for performing our desired

association analysis.

An overview of our new algorithm is given in Fig. S2. The algorithm makes use of the algebraic

manipulations found in Factored Spectrally Transformed Linear Mixed Models (FaST-LMM) [4]. In

addition, the algorithm uses the property that the RRM, given by K = WWT, where W denotes

the matrix of SNP data to be used in the RRM and is of dimension N × sc (for n individuals),

decomposes into a sum of contributions from sc single SNPs.

WWT =

sc
∑

j=1

[W]
:j [W]

T

:j ,

where [W]:j denotes the j-th column of W.

It follows that the RRM with a subset A of SNPs removed can be written as the difference

between the full RRM and the sum over contributions from the SNPs in the set A. With a slight

abuse of notation, where A denotes the set of indices of SNPs in the set A, this difference becomes

W′ ≡ WWT −
∑

l∈A

[W]
:l [W]

T

:l = W̃W̃T,

where W̃ is the n × kup matrix containing the kup SNPs to be removed. In most practical

circumstances,kup will be smaller than both the number of individuals n and the number of SNPs

in the RRM sc, and thus, as will show, it would be wasteful to compute the SD of W′. Instead our

algorithm uses the SD of the full RRM to efficiently evaluate the maximum likelihood function (or

alteratively the restricted maximum likelihood (REML) function, discussed in Section 3) and

1
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Figure S2. Avoiding proximal contamination. For every SNP tested, we exclude all SNPs

in a window (e.g., 2 centimorgans) around that SNP from the realized relationship matrix (RRM)

used in the likelihood calculations, by subtracting the product of the corresponding columns of the

SNP matrix used to construct the RRM from the covariance term in the LMM likelihood.

treats the removal of SNPs from the RRM as low-rank updates at evaluation time. This approach

is described in Section 1 for the case where the RRM is full rank (sc ≥ n) and in Section 2 for the

case where the RRM is low rank (sc < n).

Let WWT be a factored genetic similarity matrix, as defined by Equation 2.1 from the Supple-

mentary Note 1 of [4]. Let W̃ ∈ R
n×kup be a matrix containing a subset of kup columns of W. Given

the spectral decomposition of WWT = USUT we can evaluate the likelihood of an LMM with the

updated genetic similarity matrix
(

WWT − W̃W̃T

)

in O(nkup
2 + kup

3) as follows.

1 Updates for full-rank similarity matrices

In this section, we treat the case where W is an n × sc matrix with n ≤ sc, resulting in a full-rank

genetic similarity matrix. The log likelihood can be written as

logN
(

y|Xβ; σ2
g

(

WWT + δI − W̃W̃T

))

.

Replacing WWT by its spectral decomposition USUT, we get

logN
(

y|Xβ; σ2
g

(

USUT + δI − W̃W̃T

))

.

In contrast to the approach taken in [4], rotating the data by the matrix of Eigenvectors UT of

WWT does not yield a diagonal covariance term in the log-likelihood, but rather a full n×n matrix,

logN

(

(

UTy
)

|
(

UTX
)

β; σ2
g

(

S + δI −
(

UTW̃
)(

UTW̃
)T
))

.

2
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When applying the logarithm to the formula of the multivariate Normal distribution, we get

−
n

2
log
(

2πσ2
g

)

−
1

2
log

(∣

∣

∣

∣

S + δI −
(

UTW̃
)(

UTW̃
)T

∣

∣

∣

∣

)

−
1

2σ2
g

((

UTy
)

−
(

UTX
)

β
)T

(

S + δI−
(

UTW̃
)(

UTW̃
)T
)−1

((

UTy
)

−
(

UTX
)

β
)

. (1.1)

To evaluate the maximum of this log-likelihood efficiently, we have to solve for the maximum-

likelihood parameters, and evaluate the squared form of the Normal distribution and the determinant

of the covariance term. In Sections 1.1–1.3, we provide efficient solutions for each of these steps.

1.1 Maximum likelihood parameters

Given δ, the maximum likelihood weight parameters of the log likelihood in Equation 1.1 are given

by the generalized least squares estimator

β̂ =

(

(

U
T
X
)T

(

S + δI−
(

U
T
W̃
)(

U
T
W̃
)

T

)

−1
(

U
T
X
)

)

−1

(

U
T
X
)T

(

S + δI−
(

U
T
W̃
) (

U
T
W̃
)

T

)

−1
(

U
T
y
)

.

(1.2)

Given δ and β̂, the maximum likelihood genetic variance parameter is given by

σ̂2
g =

1

n

(

(

UTy
)

−
(

UTX
)

β̂
)T
(

S + δI −
(

UTW̃
)(

UTW̃
)T
)−1

(

(

UTy
)

−
(

UTX
)

β̂
)

. (1.3)

Both the weight vector β̂ as well as the genetic variance parameter σ̂2
g involve quadratic forms of the

same form as in the log-likelihood function in Equation 1.2. An efficient solution for these quadratic

forms is provided in Section 1.3.

1.2 Determinant update

To compute the log likelihood of the LMM we need to compute the determinant of the covariance,

log

(∣

∣

∣

∣

S + δI −
(

UTW̃
)(

UTW̃
)T

∣

∣

∣

∣

)

.

To do so efficiently, we make use of the matrix determinant lemma, |A + BCT| = |A|·
∣

∣I + CTA−1B
∣

∣.

In particular, we plugin A = (S + δI), B = −
(

UTW̃
)

and C =
(

UTW̃
)

, yielding

log

(

|S + δI| ·

∣

∣

∣

∣

Ikup
−
(

UTW̃
)

T

(S + δI)−1
(

UTW̃
)

∣

∣

∣

∣

)

.

Finally, applying the logarithm to this expression, we obtain the sum of two log determinants,

log (|S + δI|) + log

(∣

∣

∣

∣

Ikup
−
(

UTW̃
)T

(S + δI)
−1
(

UTW̃
)

∣

∣

∣

∣

)

.

The log determinant of (S + δI) is merely the sum of the logs of its diagonal entries. The right side

is a full kup ×kup matrix whose computation has runtime O(nkup
2). Computing its log determinant

is an O(kup
3) operation, resulting in a runtime of O(nkup

2 + kup
3) to compute the determinant.

3
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1.3 Squared form update

In all three Equations 1.1, 1.2, and 1.3 needed to evaluate the maximum-likelihood, we must evaluate

squared forms such as

aT
(

S + δI −
(

UTW̃
)(

UTW̃
)

T
)−1

b,

for different values of a and b. We note that the term
(

UTW̃
)(

UTW̃
)T

is a rank-kup update on

the genetic similarity matrix. It follows that we can use the Sherman-Morrison-Woodbury identity

(also called the Matrix inversion lemma) to efficiently evaluate these squared forms. The lemma

states that

(A + BCD) = A−1 − A−1B
(

C−1 + DA−1B
)−1

DA−1. (1.4)

We apply the Sherman-Morrison-Woodbury identity to our case by plugging in A = (S + δI),

B = −
(

UTW̃
)

, C = Ikup
and D =

(

UTW̃
)T

, yielding

a
T (S + δI)−1

b + a
T(S + δI)−1

(

U
T
W̃
)

(

Ikup
−

(

U
T
W̃
)

T

(S + δI)−1

(

U
T
W̃
)

)

−1
(

U
T
W̃
)

T

(S + δI)−1
b.

(1.5)

The bracketing

a
T (S + δI)−1

b+
((

a
T(S + δI)−1

) (

U
T
W̃

))

(

Ikup
−

(

U
T
W̃

)

T

(S + δI)−1

(

U
T
W̃

)

)

−1
(

(

U
T
W̃

)

T
(

(S + δI)−1
b

)

)

allows for evaluation of these squared forms in O(nkup
2 + kup

3).

2 Updates for low-rank similarity matrices

In this section, we treat the case where W is an n × sc matrix with n > sc, resulting in a low-rank

genetic similarity matrix. The log-likelihood is

logN
(

y|Xβ; σ2
g

(

WWT + δI − W̃W̃T

))

.

Let U1S1U
T

1, with U1 ∈ R
n×sc and S1 ∈ R

sc×sc , be the economy spectral decomposition of WWT as

in [4]. Replacing WWT by its spectral decomposition and writing out the formula for the logarithm

of a Normal distribution yields an expression for the log likelihood of

−
n

2
log
(

2πσ2
g

)

−
1

2
log
(
∣

∣

∣
U1S1U

T

1 + δI − W̃W̃T

∣

∣

∣

)

(2.1)

−
1

2σ2
g

(y − Xβ)T
(

U1S1U
T

1 + δI − W̃W̃T

)−1

(y − Xβ) . (2.2)

As in the full rank case, we have to solve for the maximum-likelihood parameters, and evaluate the

squared form of the Normal distribution and the determinant of the covariance term. In Sections 2.1–

2.3, we provide efficient solutions for each of these steps.
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2.1 Maximum likelihood parameters

Given δ, the maximum likelihood weight parameters of the log likelihood in Equation 2.1 are given

by the generalized least squares estimator

β̂ =

(

XT

(

U1S1U
T

1 + δI − W̃W̃T

)−1

X

)−1

XT

(

U1S1U
T

1 + δI − W̃W̃T

)−1

y. (2.3)

Given δ and β̂, the maximum likelihood genetic variance parameter is given by

σ̂2
g =

1

n
(y − Xβ)

T

(

U1S1U
T

1 + δI− W̃W̃T

)−1

(y − Xβ) . (2.4)

Analogously to the full rank update section earlier, here, quadratic forms are again need for evalu-

ation of Equations 2.1, 2.3, and 2.4. An efficient solution for these quadratic forms is provided in

Section 2.3.

2.2 Determinant update

The determinant in the log-likelihood in Equation 2.1 that we have to evaluate is

log
(
∣

∣

∣
U1S1U

T

1 + δI − W̃W̃T

∣

∣

∣

)

.

Given the log determinant of (U1S1U
T

1 + δI) from Equation 3.1 from the Supplementary Note 1

of [4], we can apply the matrix determinant lemma to evaluate the log determinant of the updated

LMM covariance,

sc
∑

i=1

log ([S]ii + δ) + (n − sc) (log δ) + log
(∣

∣

∣
I− W̃T

(

U1S1U
T

1 + δI
)−1

W̃

∣

∣

∣

)

. (2.5)

Using the equivalence shown in Equation 3.17 from Supplementary Note 1 of [4], the expression

W̃T
(

U1S1U
T

1 + δI
)−1

W̃

becomes

(

UT

1W̃
)

T

(S1 + δIk)
−1
(

UT

1W̃
)

+
1

δ

(

(

In − U1U
T

1

)

W̃
)

T
(

(

In − U1U
T

1

)

W̃
)

. (2.6)

This sc × sc matrix can be computed in O((n + sc)kup) time. Substituting the expression from

Equation 2.6 into the determinant from Equation 2.5, we obtain

sc
∑

i=1

log ([S]ii + δ) + (n − sc) (log δ)

+ log

(∣

∣

∣

∣

In −
(

UT

1W̃
)T

(S1 + δIk)
−1
(

UT

1W̃
)

−
1

δ

(

(

In − U1U
T

1

)

W̃
)T (

(

In − U1U
T

1

)

W̃
)

∣

∣

∣

∣

)

,

which can be evaluated in O(sc + kup
3) time, resulting in a total runtime of O(kup

3 + (n + sc)kup)

to evaluate the log determinant.
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2.3 Squared form update

Here we derive efficient evaluations for the squared form

aT
(

WWT + δI − W̃W̃T

)−1

b, (2.7)

that allows for efficient evaluation of Equations 2.1, 2.3, and 2.4 by plugging in the the appropriate

values for a and b.

Given the inverse of (WWT + δI), we can apply the Sherman-Morrison-Woodbury identity in

Equation 1.4 to derive the inverse of the updated genetic similarity matrix
(

WWT + δI − W̃W̃T

)−1

as

(

WWT + δI
)−1

+
(

WWT + δI
)−1

W̃
(

Ikup
− W̃T

(

WWT + δI
)−1

W̃
)−1

W̃T
(

WWT + δI
)−1

.

When plugging this expression into the squared form in Equation 2.7 that we need to evaluate, we

obtain

a
T
(

WW
T + δI

)

−1

b + a
T
(

WW
T + δI

)

−1

W̃
(

Ikup
− W̃

T
(

WW
T + δI

)

−1

W̃
)

−1

W̃
T
(

WW
T + δI

)

−1

b.

(2.8)

Noting that there are now squared expressions in (WWT + δI)
−1

, we can use the solution for the
low-rank quadratic form in Equation 3.17 from Supplementary Note 1 of [4] to efficiently evaluate
these expressions in O((n + sc)kup). The additional required inversion of an kup × kup matrix has
runtime O(kup

2). Finally, using the following ordering of computations, we can efficiently compute
the required matrix products.

a
T
(

WW
T + δI

)

−1
b +

((

a
T
(

WW
T + δI

)

−1
)

W̃

) (

Ikup
− W̃

T
(

WW
T + δI

)

−1
W̃

)

−1
(

W̃
T

(

(

WW
T + δI

)

−1
b

))

.

The total runtime to evaluate this expression becomes O((n + sc)kup + kup
2).

3 Restricted maximum likelihood

So far, the derivations have been limited to maximum likelihood parameter estimation. However, it
is straightforward to extend these results to the restricted log likelihood, which comprises the log
likelihood (evaluated at β̂), plus three additional terms [5]. The logarithm of the REML function
using the updated genetic similarity matrix becomes

REML
(

σ2

e , σ2

g

)

= LL
(

σ2

e , σ2

g , β̂
)

+
1

2

(

d log
(

2πσ2

g

)

+ log
∣

∣X
T
X
∣

∣

− log

∣

∣

∣

∣

σ−2

g X
T

(

WW
T
− W̃W̃

T + δI
)

−1

X

∣

∣

∣

∣

)

.

Note that the only additional term involving the updated genetic similarity matrix is

log

∣

∣

∣

∣

σ−2
g XT

(

WWT − W̃W̃T + δI
)−1

X

∣

∣

∣

∣

,

which again involves a squared form that can be solved efficiently using the efficient squared form

update from Equation 1.5 for the case when WWT has full rank, and Equation 2.8 for the case

where WWT has low rank.

The REML variance component estimate, given by

σ̂2
g =

1

n − d

(

y − Xβ̂

)

T
(

WWT + δI − W̃W̃T

)−1 (

y − Xβ̂

)

,

involves no additional expensive terms to be computed compared to the ML solution. The formulas

for the remaining parameters remain unchanged.

The space requirements for REML are the same as those for ML.
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Supplementary Note 3: Analysis of Cohorts with Substantial Genetic Structure  

 

We analyzed data from additional cohorts with substantial genetic structure. 

 

 

1966 Northern Finland Birth Cohort 

 

The first cohort is the 1966 Northern Finland Birth Cohort (NFBC66)
1,2

.  Genotype data 

were available for 5,546 Finnish individuals, all with genotyping completeness >95%.  

We prepared the data for analysis exactly as in Kang et al.
3
 In particular, we excluded 

individuals from further analysis because they had withdrawn consent (15), had 

discrepancies between reported sex and sex determined from the X chromosome (14), 

were sample duplications (2), were too related to another subject (77), had more than 5% 

missing genotypes (1) or had no phenotype data (111), leaving 5,326 individuals for 

analysis.  In addition, we excluded SNPs from the original set of 368,177 when there 

were more than two discordant genotype calls between different methods (4,711), when 

the allele frequencies were not in Hardy-Weinberg equilibrium (p<10
−4

; 5,260), when 

more than 5% of the individuals had missing values (2,535), or when the minor allele 

frequency was less than 1% (27,002), leaving 331,475 SNPs for analysis. We adjusted 

the nine phenotypes used in the original data for sex, pregnancy status, and use of oral 

contraceptives. 

 

Among the available phenotypes, we analyzed low-density lipoprotein, as it had the most 

genetic structure ( =1.10) among the phenotypes having genome-wide significant 

SNPs.  We used a 2 megabase exclusion window, because genetic distances were not 

available. The relative performance of the different algorithms was similar to that for the 

WTCCC data.  In particular, FaST-LMM-Select, which chose 300 SNPs, yielded a  of 

1.02.  In contrast, using all available SNPs and correcting for proximal contamination 

gave =1.05, showing inflation with respect to FaST-LMM-Select due to dilution.  The 

traditional approach, which used all available SNPs but did not correct for proximal 

contamination, yielded a lower value ( =1.00), demonstrating the effect of deflation 

compared to the analysis that corrected for proximal contamination.  As for power, using 

all SNPs (with or without correcting for proximal contamination) identified three loci as 

significant, (p < 7.2 x 10
-8

) as in Kang et al.
3
  The first locus was near genes CELSR2, 

PSRC1, SORT1 on chromosome 1, the second was near APOB on chromosome 2, and the 

third was LDLR on chromosome 19.  Associations with all three loci have been 

validated
1
. In contrast, FaST-LMM-Select identified these same three loci and one 

additional locus near genes FADS1 and FADS2 on chromosome 11, which also has been 

validated
1
. 

 

 

Genetic Analysis Workshop 14 

 

Data for this cohort was obtained from the Genetic Analysis Workshop (GAW) 14
4
.  It 

consisted of autosomal SNP data from an Affymetrix SNP panel and a phenotype 

indicating whether an individual smoked a pack of cigarettes a day or more for six 
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months or more.  The cohort included over eight ethnicities and numerous close family 

members—1,034 individuals in the dataset had parents, children, or siblings also in the 

dataset.  In addition to the data preparation provided by GAW, we excluded a SNP when 

either (1) its minor allele frequency was less than 0.05, (2) its values were missing in 

more than 10% of the population, or its allele frequencies were not in Hardy-Weinberg 

equilibrium (p<0.001). In addition, we excluded an individual with more than 10% of 

SNP values missing. After filtering, there were 7,579 SNPs across 1,261 individuals.  As 

in the main paper, we used a 2 centimorgan exclusion window. 

 

On this data, linear regression yielded , significantly higher than 1.0 (p<0.001), 

reflecting the large amount of genetic structure.  Despite this substantial structure, FaST-

LMM-Select chose only 650 SNPs and was well calibrated, yielding  not significantly 

different from 1.0 (p=0.19; Fig. S3).  Interestingly, FaST-LMM-Select identified a single 

SNP, rs1950284, as significant (p=1.7x10
-8

).  While this association has not been 

validated, the SNP lies in the GPHN gene, for which a prior association with other forms 

of addiction has been reported
5
.  Use of all available SNPs in the similarity matrix while 

accounting for proximal contamination also yielded no significant deviation from 

 (p=0.24), but did not identify this SNP as significant. The traditional approach 

(use of all SNPs and not accounting for proximal contamination) yielded   

significantly lower than 1.0 (p=0.02). This deflation presumably resulted from not 

accounting for proximal contamination.  Statistical significance of deviation of from 

1.0 was estimated using a Monte Carlo simulation of the null distribution (uniform on 

[0,1]) with 1000 sampled distributions.  

 

To demonstrate the robustness of FaST-LMM-Select to extremely strong genetic 

structure, we filtered the data to include only sib pairs (N=920).  Again, FaST-LMM-

Select was well calibrated, yielding  not significantly different from 1.0 (p=0.31; Fig. 

S3).  Here, the approach used 630 SNPs in the genetic similarity matrix.  Possibly due to 

the reduced sample size, the SNP rs1950284 no longer reached genome-wide 

significance.  Use of all available SNPs in the similarity matrix, either accounting or not 

accounting for proximal contamination, also yielded no significant deviation from 

 (p=0.41, p=0.16). 
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(a) 

 
 

(b) 

 
Figure S3.  Calibration for the analysis of GAW14 data.  Quantile-quantile plots of 

negative log P values for FaST-LMM-Select, FaST-LMM all (using all available SNPs to 

estimate genetic similarity and accounting for proximal contamination), Traditional 

(using all SNPs to estimate genetic similarity but not accounting for proximal 

contamination), and linear regression, on a GWAS of (a) the GAW14 data and (b) a 

subset including only sib pairs.  Dashed lines show 0.05 confidence intervals. 
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Arabidopsis thaliana 

 

The data was taken from a GWAS of 107 phenotypes on 199 Arabidopsis thaliana inbred 

lines
6
.  The lines were genotyped using a 250k Affymetrix SNP-tiling array containing 

248,584 SNPs
7
.  The sample was shown to have highly complex population structure 

involving patterns of relatedness on all scales
6
.  Arabidopsis thaliana exhibits continuous 

isolation by distance at every geographic scale with the result that population genetic 

models assuming discrete populations work poorly on this species
8
.   

 

In addition to the data preparation provided by Atwell et al.
6
, we excluded a SNP when 

its minor allele frequency was less than 0.05.  We did not filter SNPs based on deviation 

from Hardy-Weinberg equilibrium, as such a filter would have excluded all SNPs (using 

a threshold p < 0.001). After filtering, there were 206,612 SNPs.  Our LMM analyses 

used a 400 kilobase window of exclusion corresponding to a genetic distance of 

approximately 2 centimorgans (genetic distances were not available).  FaST-LMM-Select 

chose 800 SNPs for the genetic similarity matrix.  Note that values of GC were 

somewhat noisy due to the small sample size of this cohort.  Consequently, we identified 

the first minimum using a grid search smoothed by a polynomial fit, rather than golden 

section search. 

 

There were many strong associations in this cohort, making it difficult to evaluate 

calibration
6
.  Consequently, as in Atwell et al., we compared methods by their ability to 

identify SNPs that were likely a priori to be associated with a given phenotype. 

Following the main example used in Atwell et al., we analyzed the phenotype of 

flowering time at 10
o
 Centigrade.  For each method, we sorted SNPs by their P value of 

association, identifying the most strongly associated k SNPs for k ranging from 1 to 2000 

(Atwell et al. selected approximately 2000 SNPs using an uncorrected approach, and 

approximately 250 SNPs using a LMM—see their Fig. 3).  Then, for each method and 

value of k, we determined how many of the k associations coincided with candidate 

SNPs, those that were within 20 kilobases (as in Atwell et al.) of a gene likely to be 

associated with flowering (Fig. S4).  The list of such genes was provided by Atwell et al. 

and was an updated version from the one used in their paper. 

 

Over the range of k, FaST-LMM-Select generally identified the most candidate SNPs 

(i.e., true positives) among the top-ranked k SNPs, followed by FaST-LMM all (where all 

available SNPs were used in the genetic similarity matrix), the traditional LMM approach 

(which used all available SNPs and did not account for proximal contamination), and 

finally linear regression.  At k=2000, these methods (in order) identified 176, 148, 147, 

and 110 true positives.  Only FaST-LMM-Select identified more SNPs than what would 

have been expected by chance (P values reported in Fig. S4).   
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Figure S4.  Enrichment of likely SNP associations for the trait of flowering time at 

10
o
 Centigrade.  Number of candidate SNPs (i.e., true positives) identified versus the 

number of SNPs labeled positive (k) are plotted for each method.  The methods include 

Fast-LMM-Select, Fast-LMM all, the traditional LMM approach which ignores proximal 

contamination, and linear regression.  The solid black line shows what would be expected 

by chance.  Two-sided P values for whether candidate SNPs were more enriched than by 

chance are shown adjacent to each curve.  These P values were determined using the 

permutation method described in Supplementary Information 3.3 of Atwell et al., which 

preserves the linkage-disequilibrium structure in the SNPs. 
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