
Text S1. Model analysis and approximation

1. Analysis of the pre-therapy model.

We solve the R(a, t) equation in the pre-therapy model. The characteristic curves are t − a =

constant. We assume that they intersect with the a-axis at (a0, 0) and intersect with the t-axis at

(0, t0), where a0 ≥ 0 and t0 ≥ 0.

When a ≥ t, the characteristic curves can be described by the parametric equation t = τ ,

a = τ + a0, where τ is a free parameter. When τ increases from 0 to t, a(τ) increases from a0 to a

and t(τ) increases from 0 to t. Along the characteristic curves, we have

dR(a(τ), t(τ))

dτ
=

∂R

∂t

dt

dτ
+

∂R

∂a

da

dτ
= α(a(τ))− [ρ(a(τ)) + µ(a(τ))]R(a(τ), t(τ)).

Using the variation of constants formula, we obtain

R(a, t) = R(a0, 0)e
−

∫ t
0 [ρ(a(τ))+µ(a(τ))]dτ + e−

∫ t
0 [ρ(a(τ))+µ(a(τ))]dτ

∫ t

0
α(a(u))e

∫ u
0 [ρ(a(τ))+µ(a(τ))]dτdu.

Note that ∫ t

0
[ρ(a(τ)) + µ(a(τ))]dτ =

∫ a

a0

[ρ(ς) + µ(ς)]dς,

we have

e−
∫ t
0 [ρ(a(τ))+µ(a(τ))]dτ = e

−
∫ a
a0

[ρ(ς)+µ(ς)]dς
=

π(a)

π(a0)
,

where

π(a) = e−
∫ a
0 [ρ(τ)+µ(τ)]dτ .

We also have∫ t

0
α(a(u))e

∫ u
0 [ρ(a(τ))+µ(a(τ))]dτdu =

∫ t

0
α(a(u))e

∫ a0+u
a0

[ρ(η)+µ(η)]dη
du

=

∫ a

a0

α(ς)e
∫ ς
a0

[ρ(η)+µ(η)]dη
dς =

∫ a

a0

α(ς)
π(a0)

π(ς)
dς.

Thus, when a ≥ t, we obtain

R(a, t) = R(a0, 0)
π(a)

π(a0)
+

∫ a

a0

π(a)

π(ς)
α(ς)dς = R0(a− t)

π(a)

π(a− t)
+

∫ t

0

π(a)

π(a− u)
α(a− u)du.

When a < t, the characteristic curves can be described by t = τ , a = τ − t0. When τ increases

from t0 to t, a(τ) increases from 0 to a and t(τ) increases from t0 to t. Using the method of
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characteristics again, we obtain

R(a, t) = R(0, t− a)π(a) +

∫ a

0

π(a)

π(u)
α(u)du.

Thus, we have a complete solution for R(a, t), given by

R(a, t) =


π(a) +

∫ a

0

π(a)

π(u)
α(u)du for a < t,

R0(a− t)
π(a)

π(a− t)
+

∫ t

0

π(a)

π(a− u)
α(a− u)du for a ≥ t.

(1)

Similarly, integrating the I equation in the pre-therapy model along the characteristic lines,

t− a = constant, we get the solution of I(a, t), given by

I(a, t) =


βV (t− a)T (t− a)ω(a) for a < t,

I0(a− t)
ω(a)

ω(a− t)
for a ≥ t,

(2)

where ω(a) = e−
∫ a
0 δ(τ)dτ .

When δ(a), α(a), ρ(a), and µ(a) are all constants, R(a, t) and I(a, t) become

R(a, t) =


α

ρ+ µ
+ (1− α

ρ+ µ
)e−(ρ+µ)a for a < t,

α

ρ+ µ
+ [R0(a− t)− α

ρ+ µ
]e−(ρ+µ)t for a ≥ t,

(3)

I(a, t) =


βV (t− a)T (t− a)e−δa for a < t,

I0(a− t)e−δt for a ≥ t.

(4)

The post-therapy model has an analogous solution where the constants α, ρ, and µ are modu-

lated by the drug effects and become (1− ϵα)α, (1− ϵs)ρ, and κµ, respectively.

We show that the infection-free steady state is locally asymptotically stable when R0 < 1 and

unstable when R0 < 1, and that the infected steady state is locally asymptotically stable whenever

it exists (i.e. R0 > 1), where R0 = βNs/(dc). Analyzing the stability of the steady states of the
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pre-therapy model is equivalent to analysis of the following limiting system [1]

d

dt
T (t) = s− dT (t)− βV (t)T (t),

d

dt
V (t) =

∫ ∞

0
ρ(a)βV (t− a)T (t− a)ω(a)R̄(a)da− cV (t),

(5)

where R̄(a) is the steady state distribution of intracellular vRNAs, given by

R̄(a) = π(a) +

∫ a

0

π(a)

π(u)
α(u)du.

The infected and infection-free steady states for the limiting system are (T̄ , V̄ ) and (s/d, 0),

respectively, with

T̄ =
c

βN
, V̄ =

s− dT̄

βT̄
=

sN

c
− d

β
=

d

β
(R0 − 1) (6)

where N is the burst size, given by

N =

∫ ∞

0
ρ(a)R̄(a)ω(a)da.

It is clear that the infected steady state exists if and only if R0 > 1.

The Jacobian matrix for the limiting system is

J =

 −d− βV̄ − λ −βT̄

βV̄
∫∞
0 ρ(a)ω(a)R̄(a)e−λada βT̄

∫∞
0 ρ(a)ω(a)R̄(a)e−λada− c− λ

 (7)

where λ is an eigenvalue.

At the infection-free steady state, the characteristic equation is

(λ+ d)

[
λ− βT̄

∫ ∞

0
ρ(a)ω(a)R̄(a)e−λada+ c

]
= 0. (8)

One eigenvalue is λ = −d and all other eigenvalues are determined by

λ− βT̄

∫ ∞

0
ρ(a)ω(a)R̄(a)e−λada+ c = 0, (9)

which can be rewritten as
λ

c
+ 1 = R0

∫∞
0 ρ(a)ω(a)R̄(a)e−λada∫∞

0 ρ(a)ω(a)R̄(a)da
. (10)

For all complex roots λ with non-negative real parts,

|
∫ ∞

0
ρ(a)ω(a)R̄(a)e−λada| ≤

∫ ∞

0
ρ(a)ω(a)R̄(a)da.
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Thus, the modulus of the right hand side of (10) is less than 1 when R0 < 1. Because the modulus

of the left hand side of (10) is always greater than or equal to 1 for λ with non-negative real parts,

we conclude that all roots of the characteristic equation (9) have negative real parts when R0 < 1.

This shows that the infection-free steady state is locally asymptotically stable when R0 < 1.

When R0 > 1, we let

f(λ) =
λ

c
+ 1−R0

∫∞
0 ρ(a)ω(a)R̄(a)e−λada∫∞

0 ρ(a)ω(a)R̄(a)da
.

It is clear that f(0) = 1 − R0 < 0 and f(λ) → ∞ as λ → ∞. Thus, there exists a positive root

for the equation f(λ) = 0. This shows that the characteristic equation (9) has at least one positive

root. Thus, the infection-free steady state is unstable when R0 > 1.

At the infected steady state, the characteristic equation is

(λ+ d+ βV̄ )

[
λ+ c− βT̄

∫ ∞

0
ρ(a)ω(a)R̄(a)e−λada

]
+ βT̄βV̄

∫ ∞

0
ρ(a)ω(a)R̄(a)e−λada = 0. (11)

Considering that T̄ = c/(βN) and N =
∫∞
0 ρ(a)ω(a)R̄(a)da, Eq. (11) can be rewritten as

(λ+ d+ βV̄ )(
λ

c
+ 1) = (λ+ d)

∫∞
0 ρ(a)ω(a)R̄(a)e−λada∫∞

0 ρ(a)ω(a)R̄(a)da
. (12)

For all complex roots λ with non-negative real parts, the modulus of the left hand side of (12) is

greater than the modulus of the right hand side. Thus, the characteristic equation (11) has no

roots with non-negative real parts. Therefore, the infected steady state is locally asymptotically

stable whenever it exists.

2. Short-term approximation of viral load decline after initiation of therapy.

We solve R(a, t) and I(a, t) in the model under therapy. We assume that the system is in the

infected steady state at the onset of therapy at a time we call t = 0. We also assume that δ(a),

α(a), ρ(a), and µ(a) are all constants to obtain explicit approximations of the viral load decline

during therapy. Similar to Eq. (3) and (4), we obtain a complete solution for R(a, t) and I(a, t)

under therapy, given by

R(a, t) =


A

B
+ (1− A

B
)e−Ba for a < t,

A

B
+

(
R̄(a− t)− A

B

)
e−Bt for a ≥ t.

(13)
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I(a, t) =


βV (t− a)T (t− a)e−δa for a < t,

Ī(a− t)e−δt for a ≥ t,

(14)

where A = (1 − ϵα)α and B = (1 − ϵs)ρ + κµ. R̄(a) and Ī(a) are the steady state distribution of

vRNAs and infected cells, respectively, before the onset of therapy, and are given by

R̄(a) =
α

ρ+ µ
+ (1− α

ρ+ µ
)e−(ρ+µ)a, Ī(a) = βV̄ T̄ e−δa.

Thus, for a ≥ t, I(a, t) = Ī(a− t)e−δt = βV̄ T̄ e−δa.

We approximate the viral load decline by assuming that after therapy is initiated infected cells

remain at their steady state distribution, i.e., I(a, t) = Ī(a) = βV̄ T̄ e−δa. This is equivalent to

assuming that new infections (corresponding to a < t) occur at a rate βV̄ T̄ after therapy initiation.

This assumption is reasonable only for a short time after therapy initiation because new infections

will decline in the presence of effective treatment. In this case, the virus equation becomes

d

dt
V (t) = (1− ϵs)ρ

∫ ∞

0
R(a, t)Ī(a)da− cV (t). (15)

In consideration of R(a, t) in (13), we split the integral in the above equation into two parts

∫ ∞

0
R(a, t)Ī(a)da =

∫ t

0
R(a, t)Ī(a)da+

∫ ∞

t
R(a, t)Ī(a)da.

We calculate the first part and obtain∫ t

0
R(a, t)Ī(a)da =

∫ t

0

[
A

B
+ (1− A

B
)e−Ba

]
βV̄ T̄ e−δada

= βV̄ T̄

[
A+ δ

(B + δ)δ
− A

Bδ
e−δt +

A−B

(B + δ)B
e−(B+δ)t

]
.

Similarly, we calculate the second part and obtain∫ ∞

t
R(a, t)Ī(a)da =

∫ ∞

t

[
A

B
+

(
α

ρ+ µ
+ (1− α

ρ+ µ
)e−(ρ+µ)(a−t) − A

B

)
e−Bt

]
βV̄ T̄ e−δada

= βV̄ T̄

[
A

Bδ
e−δt(1− e−Bt) +

N

ρ
e−(B+δ)t

]
,

where

N =

∫ ∞

0
ρR̄(a)ω(a)da =

ρ(α+ δ)

δ(ρ+ µ+ δ)
.
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Adding the above two integrals and simplifying, we have∫ ∞

0
R(a, t)Ī(a)da =

c

N
V̄

{
A+ δ

(B + δ)δ
+

(
N

ρ
− A+ δ

(B + δ)δ

)
e−(B+δ)t

}
. (16)

Plugging (16) into (15) and solving for V (t), we obtain

V (t)

V0
= e−ct+(1−ϵs)

cρ

N

{
A+ δ

(B + δ)cδ
(1−e−ct)+

1

B + δ − c

(
N

ρ
− A+ δ

(B + δ)δ

)
(e−ct−e−(B+δ)t)

}
, (17)

where

A = (1− ϵα)α, B = (1− ϵs)ρ+ κµ, N =
ρ(α+ δ)

δ(ρ+ µ+ δ)
,

and V0 = V̄ is the baseline viral load before the onset of therapy. Because the assumption that

new infections occur at a rate βV̄ T̄ is reasonable only for a short time after therapy initiation, we

call Eq. (17) a short-term approximation of the viral decline after therapy.

3. Inclusion of e−γt in the R equation to represent the decay of replication templates.

From Eq. (13), R(a, t) will converge to a non-zero steady state solution A/B. However, this is

unrealistic under effective therapy since all viral RNA can be eliminated with long-term treatment

[2]. Thus, in this case, we modify the equation of R(a, t) by introducing a new term, e−γt, which

represents the decay of replication templates (e.g. replication complexes or negative strand HCV

RNA) under therapy. The R(a, t) equation becomes

∂

∂t
R(a, t) +

∂

∂a
R(a, t) = (1− ϵα)αe

−γt − [(1− ϵs)ρ+ κµ]R(a, t), (18)

with the initial condition

R̄(a) =
α

ρ+ µ
+ (1− α

ρ+ µ
)e−(ρ+µ)a.

The inclusion of e−γt in the R equation is consistent with the formulation of the intracellular

model that explicitly includes the dynamics of replication complexes in [3]. The intracellular model

in [3] is given by
d

dt
U(t) = βuR(1− U

Umax
)− γU,

d

dt
R(t) = αU − ρR− µR,

(19)

where U(t) is the quantity of HCV replication complexes. Intracellular viral RNA (R) serves as

a template for the generation of replication complexes with a maximum rate βu. Umax is the

maximum number of replication complexes within a cell. U serves as a template for the generation

of α intracellular viral RNAs per replication complex per unit of time. Other parameters are the

same as those in this paper.
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Similar to Eq. (5) in the main text, we incorporate three possible effects of DAA into the above

model. The model becomes

d

dt
U(t) = βuR(1− U

Umax
)− γU,

d

dt
R(t) = AU −BR,

(20)

where A = (1− ϵα)α and B = (1− ϵs)ρ+ κµ.

Under potent therapy, the system will converge to the infection-free steady state (Ū , R̄) = (0, 0).

The Jacobian at this steady state is

J(0, 0) =

 −γ βu

A −B


The eigenvalues are

λ1,2 =
−(γ +B)±

√
(γ +B)2 − 4(γB −Aβu)

2
.

Under potent therapy, 4Aβu = 4(1− ϵα)αβu << (γ−B)2. Thus, the eigenvalues are approximately

−γ and − B. Therefore, under potent therapy, the level of intracellular viral RNA will decline

in a biphasic manner, with two slopes B and γ. This is consistent with the prediction by the

age-structured equation (18) for R(a, t) (see the solution of R(a, t) in (22)).

4. Long-term approximation of viral load decline after initiation of therapy.

We approximate the viral load decline by neglecting all new infections after the onset of therapy,

i.e., by assuming I(a, t) = R(a, t) = 0 for a < t. When a ≥ t, the characteristic curves of equation

(18), t− a = constant, can be described by the parametric equation t = τ , a = τ + a0. Along the

characteristic curves, we have

dR(a(τ), t(τ))

dτ
= (1− ϵα)αe

−γt(τ) − [(1− ϵs)ρ+ κµ]R(a(τ), t(τ)).

Considering that A = (1− ϵα)α and B = (1− ϵs)ρ+ κµ, we have

dR

dτ
= Ae−γτ −BR. (21)

Integrating τ from 0 to t, we have

R(a, t) = R(a0, 0)e
−Bt + e−Bt

∫ t

0
eBuAe−γudu

=
A

B − γ
e−γt + [R̄(a− t)− A

B − γ
]e−Bt, for a ≥ t. (22)
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The virus equation in the model under therapy becomes

d

dt
V (t) = (1− ϵs)ρ

∫ ∞

t
R(a, t)I(a, t)da− cV (t). (23)

Using R(a, t) in Eq. (22) and I(a, t) = Ī(a − t)e−δt = βV̄ T̄ e−δa for a ≥ t, we calculate the

integral ∫ ∞

t
R(a, t)I(a, t)da =

∫ ∞

t

{
A

B − γ
e−γt + [R̄(a− t)− A

B − γ
]e−Bt

}
βV̄ T̄ e−δada

= βV̄ T̄

∫ ∞

t

{
A

B − γ
e−γt + [

α

ρ+ µ
+ (1− α

ρ+ µ
)e−(ρ+µ)(a−t) − A

B − γ
]e−Bt

}
e−δada

= βV̄ T̄

{
A

(B − γ)δ
e−(δ+γ)t + [

α+ δ

δ(ρ+ µ+ δ)
− A

(B − γ)δ
]e−(B+δ)t

}
.

Considering that

N =
ρ(α+ δ)

δ(ρ+ µ+ δ)
and βV̄ T̄ =

cV̄

N
,

we have ∫ ∞

t
R(a, t)I(a, t)da =

cV̄

N

{
A

(B − γ)δ
e−(δ+γ)t + [

N

ρ
− A

(B − γ)δ
]e−(B+δ)t

}
.

Plugging the above integral into the virus equation (23) and solving for V (t), we obtain

V (t)

V0
= e−ct + (1− ϵs)

cρ

N

{
A

(B − γ)δ(δ + γ − c)
(e−ct − e−(δ+γ)t)

+
1

B + δ − c

(
N

ρ
− A

(B − γ)δ

)
(e−ct − e−(B+δ)t)

}
.

(24)

In this approximation, we neglect all new infections during therapy. This is reasonable after therapy

for a period of time that substantially reduces the viral load. Thus, we call Eq. (24) a long-term

approximation of the viral decline after therapy.

5. Duration of phases of viral decline.

Because the long-term approximation (24) includes three exponential terms, the viral load

decline has three phases under certain conditions. We can approximate the duration of the first

and second phases of viral decline under therapy.

Equation (24) can be rewritten as

V (t)

V0
= C1e

−ct + C2e
−(B+δ)t + C3e

−(γ+δ)t,

8



where

C1 = 1− (1− ϵs)
cρ

N

[
A

(B − γ)δ(c− δ − γ)
+

1

c−B − δ

(
N

ρ
− A

(B − γ)δ

)]
,

C2 = (1− ϵs)
cρ

N
· 1

c−B − δ

(
N

ρ
− A

(B − γ)δ

)
,

C3 = (1− ϵs)
cρ

N
· A

(B − γ)δ(c− δ − γ)
.

The duration of the first phase of viral decline, denoted by D1, is the time at which two curves

log10(C1e
−ct) and log10[C2e

−(B+δ)t] intersect. Thus, we have D1 =
ln(

C1
C2

)

c−(B+δ) .

Similarly, we have for the duration of the second phase of viral decline D2 =
ln(

C2
C3

)

B−γ .

If ϵs is close to 1, then C1 >> C2 and there is a visible first-phase viral decline with slope c.

If ϵα is close to 1, then A = (1 − ϵα)α is very small. As a consequence, C2 >> C3 and there is a

visible second-phase viral decline with slope B + δ.

6. Effect of κ on viral decline.

The effect of κ on the viral load decline is shown in the following figure. In panel A, we assume

ϵs = ϵα = 0.99. The viral load decline has three phases. As κ increases, the slope of the second-

phase viral decline increases, whereas its duration decreases. In panel B, we assume ϵs = 0 and

ϵα = 0.99. The viral load decline has two phases. The phase with slope c is not visible. As κ

increases, the slope of the first-phase viral decline increases.
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Figure S1. The effect of κ on viral decline. A. We assume ϵs = ϵα = 0.99. B. We assume
ϵs = 0 and ϵα = 0.99. The other parameter values are the same as those in Figure 3 in the main
text.
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