Supplementary material

Supplementary Results

Altered nuclear and mitochondrial parameters after cell cycle blockage by double thymidine.

Treatment with double thymidine resulted in about 2-fold higher levels of PCNA immunostaining and at least 2 to 4-fold higher levels of mREP (Supplementary Figure S5A) indicating enhanced activity of DNA synthesis both at the nuclear and organelle level compared to serum starvation. Higher levels of mREP were associated with larger amounts of mtDNA (about 5-folds) as it appeared from q-PCR analysis (Supplementary Figure S5A), although the mitochondrial mass (TOM22 immunolabeling, Figure 5C) was not significantly altered compared to serum starvation (Figure 2E). Interestingly, the ratio of 7S DNA to mtDNA was globally close to 1 (from 0.71 to 1.38) in all phases of the cell cycle after serum starvation whereas it was always >1 (from 1.22 to 1.85) after double thymidine treatment (Supplementary Figure S5A), indicating that in the latter only a minority of events of initiation of replication extend beyond the 7S region. Finally, mTRANS levels were 2 to 4fold larger after double thymidine treatment than after serum starvation (Supplementary Figure S5B); this was also the case for mitochondrial transcripts assessed by RT-qPCR (about 15-fold higher levels of 16S and CytB in G1, and until 38-fold higher levels of 16S during the S-phase), indicating that not only DNA synthesis but also transcript levels globally increased in mitochondria after double thymidine treatment.

Altered mitochondrial parameters after cell cycle blockage by nocodazole

Nocodazole arrests cells in G2/M. During blockage of the cell cycle by nocodazole the mitochondrial mass measured by TOM22 immunofluorescence was in certain phases about 2-

fold greater than during blockage with serum starvation (Figure 6C and Figure 2E, respectively) and about 50% more than during blockage with double thymidine, Figure 5C. These data are in agreement with the 20 % increase in the mt mass/cell after treatment with nocodazole for 14-15h (but not at shorter times, 8h), measured by Mito tracker Green FM, and flow cytometry by an acridine orange derivative, NAO (37).

The mitochondrial transcripts, measured by mTRANS labelling were about 2.5-fold higher after cell cycle arrest with nocodazole than with the other treatments (Figure 6F and Supplementary Figure S5B). mTRANS levels remained high during all the cell cycle, with the exception of the G2/M phases. After nocodazole treatment, the levels of mtDNA were also significantly higher than after serum starvation (5 to 22-fold in the D-loop region, Supplementary Figure S5A, and 5.7-fold at the 12S locus in the S-phase), and about 2-fold higher than after synchronization by double thymidine (but 4.4-fold higher in G1/S). Interestingly, after treatment with nocodazole the mtDNA content (grey columns, Supplementary Figure S5A) was highly variable during the cell cycle, although to a lesser extent than 7S (white columns, Supplementary Figure S5A), with about a 3-fold decrease at the end of G1 and the highest values at the end of the S-phase. In contrast, after release from serum starvation the mtDNA content decreased once, sharply, (Figure 3E), as reported (1), then it slightly increased until the S-phase and again in G1. Nevertheless under these conditions the mtDNA content remains globally comparable during the cell cycle in agreement with previous findings (27). Thus, differently from serum starvation, nocodazole treatment globally alters the mtDNA content, transcript levels, and the mitochondrial mass, and this is also the case within the various phases of the cell cycle.

Supplementary Reference

 Xiong, W., Jiao, Y., Huang, W., Ma, M., Yu, M., Cui, Q. and Tan, D. (2012) Regulation of the cell cycle via mitochondrial gene expression and energy metabolism in HeLa cells. *Acta Biochim Biophys Sin (Shanghai)*, 44, 347-358.

Supplementary Figure legends

Figure S1. Variation in the mitochondrial mass is not necessarily correlated with the cell size. (A) Graph represents mitochondrial mass (TOM22 immunofluorescence) and cell surface (square pixels) variation, in percentage, at different phase of the cell cycle compared to G0. The cell cycle was synchronized with serum starvation. Red arrows indicate conditions where mitochondrial mass variation does correlated with changes in the cell size. (B) The same analysis as in panel A, performed with cell cycle synchronized with double thymidine and, (C) with nocodazole. With double thymidine synchronization the percentages of TOM22 and cell surface appear to display similar profiles during the cell cycle, however note that in several cases (i.e. 5h and 16h) significant increases of the mitochondrial mass takes place at unchanged cell surface. Note also that with all synchronization procedures the cell surface is severely reduced in G2/M (and when identified, in events B), as expected for cells undergone mitosis, and this is also the case for the mitochondrial mass, indicating redistribution of mitochondria in the two daughter cells. (D) Absolute values of TOM22 fluorescence intensity and cell surface (square pixels, ImageJ, Area Fraction) for conditions shown in panels A-C. N=30 cells, from three independent experiments. Standard error of the mean is also indicated. Absence of direct correlation between mitochondrial mass (TOM22 immunofluorescence) and cell length (µm of the longest axes) was also observed, not shown. TOM22 fluorescence intensity quantification (absolute values) were shown in Figure 2E (serum starvation), Figure 5C (double thymidine), and Figure 6C (nocodazole).

Figure S2. Immunofluorescence of nucleoid makers TFAM and Poly during the cell cycle synchronized by serum starvation. 3D-reconstruction of HeLa cells immunolabelled with (A) Poly (green) and (B) TFAM (green) during the cell cycle at times indicated on top. Scale bar = 10μ m. Quantification of the intensity of fluorescence of Poly and of TFAM are reported in Figure 3C and Figure 4C, respectively.

Figure S3. Proportion of mREP and mTRANS labelling in mitochondria during the cell cycle synchronized by serum starvation. (A) Proportion of mitochondria engaged in mtDNA initiation of replication during the cell cycle evaluated by percentage of mREP signal (initiation of mtDNA replication) relative to mitochondrial mass (immunolabeling with TOM22). The high levels of mREP/TOM22 at G2/M are largely due to decreased mitochondrial mass probably associated to decreased cell size, in particular at events "B", which likely represent cells undergone mitosis, rather than to an increase in the mREP signal itself. (B) Proportion of mtRANS signal (mtDNA transcription) relative to mitochondrial mass. The high levels of mTRANS/TOM22 at G2/M are largely due to decreased mitochondrial mass probably associated to decreased cell size, rather than to an increase in the mREP signal mass. The high levels of mtRANS/TOM22 at G2/M are largely due to decreased mitochondrial mass probably associated to decreased cell size, rather than to an increase in the mREP signal mass. The high levels of mtranscription decreased cell size, rather than to an increase in the mREP signal mass probably associated to decreased cell size, rather than to an increase in the mREP signal mass.

Figure S4. Immunostaining of nuclear PCNA and mitochondrial TOM22 during the cell cycle synchronized by double thymidine and nocodazole. (A) Synchronization by double thymidine. Left panels: 3D-reconstruction of HeLa cells labelled with anti-PCNA (red) at the indicated times after release from the treatment identifies the phase of cell cycle. S-phase occurs at 2h-5h, and a second S-phase appears at 16h. With the other synchronization

procedures a single S-phase was detected in the time intervals analysed. Quantification of PCNA immunofluorescence is shown in Figure 5B. Right panels: 3D-reconstruction of HeLa cells labelled with anti-TOM22 (green) at the indicated times after release from double thymidine treatment. Quantification of TOM22 immunofluorescence is shown in Figure 5C. Scale bar=10 μ m. (B) Synchronization by nocodazole. Left panels: 3D-reconstruction of HeLa cells labelled with anti-PCNA (red) at the indicated times after release from the treatment identifies the phases of cell cycle. Quantification of PCNA immunofluorescence is shown in Figure 6B. Right panels: 3D-reconstruction of HeLa cells labelled with anti-TOM22 (green) at the indicated times after release from the TOM22 immunofluorescence is shown in Figure 6B. Right panels: 3D-reconstruction of HeLa cells labelled with anti-TOM22 (green) at the indicated times after release from the Indicated times

Figure S5. Comparison of replication and transcription related parameters during the cell cycle using different synchronization procedures. (A) Comparison of DNA replication parameters with three different synchronization procedures. Relative fluorescence intensity levels of PCNA and mREP, and mtDNA content (including 7S DNA) at various times after release from serum starvation, double thymidine, or nocodazole treatment are normalized to serum starvation. For each condition, the phase corresponding to cell cycle arrest is indicated on top of the first column in the left panel. On the Y-axis, relative values are indicated (PCNA 1=200k; mREP 1=100k; mtDNA content, measured as in (27); 1= value 50); the same scales are used for the three conditions to underscore quantitative differences. X-axis is shifted to place S-phases at the same position for the three conditions. PCNA and mREP values are from Figure 2B and Figure 3B, respectively (serum starvation), and from Figure 5 B,C (double thymidine) and Figure 6 B,C (nocodazole). **(B)** Comparison of mtDNA transcription with three different synchronization procedures. Relative fluorescence intensity levels of mTRANS and expression levels of TFAM at various times after release from serum

starvation, or double thymidine, or nocodazole treatments, are normalized to serum starvation. Indications as in panel A. On the Y-axis, relative values are indicated (mTRANS 1=100k; TFAM 1=200k); mTRANS and TFAM values are from Figure 4 (serum starvation) and Figure 5 (double thymidine) and 6 (nocodazole).

double thymidine				
	TOM22	Coll	TOM22	Surface
	fluorescence	curfaco	SENA	SEM
hrs	intensity	surrace	SEIVI	SEIVI
0	378103	48459	33405	1985
2	594234	62628	26444	2034
5	489354	50575	38165	3285
8	246900	33674	18500	2175
12	415427	45550	16488	2377
16	495428	51239	18486	1951

Probe	start	end	size
1	1905	2866	961
6	7400	8518	1118
11	13416	14836	1420
mREP	446	544	98
mTRANS	probes 1, 6, 11		

human mt genome start1human mt genome end16568

Table S1. Coordinates of the probes.

The start and end points of probes used for FISH experiments are given on the mitochondrial DNA (NC_012920,GenBank, was used as reference). This mtDNA is a circular molecule of 16568 bp in size according to the reference above. Mix of more than one probe and their composition are indicated in individual panels below. All probes are oriented in the direction of transcription of the H strand, with the exception of probe ND6 that is in the inverse orientation (transcription on the L strand).

	RI-qPCR p	orimers	
Probe	forward primer	reverse primer	reference
TBP	CTCACAGGTCAAAGGTTTAC	GCTGAGGTTGCAGGAATTGA	Mercy et al. 2005. FEBS Journal 272(19):
12S (1)	CTGCTCGCCAGAACACTACG	TGAGCAAGAGGTGGTGAGGT	Suissa et al. 2009. PLoS Genetics 5(5):e1000474
12S (2)	AAACTGCTCGCCAGAACACT	CATGGGCTACACCTTGACCT	Uchuimi et al. 2010. NAR 38(16)
16S (1)	GTATGAATGGCTCCACGAGG	GGTCTTCTCGTCTTGCTGTG	Suissa et al. 2009. PLoS Genetics 5(5):e1000474
16S(2)	GCTAAACCTAGCCCCAAACC	TTGGCTCTCCTTGCAAAGTT	Uchuimi et al. 2010. NAR 38(16)
ND1	TGGCCAACCTCCTACTCCTC	ATGGCGTCAGCGAAGGGTTG	Suissa et al. 2009. PLoS Genetics 5(5):e1000474
ND2	ACTGCGCTAAGCTCGCACTG	ATTATGGATGCGGTTGCTTG	Suissa et al. 2009. PLoS Genetics 5(5):e1000474
COI	ACCCTAGACCAAACCTACGC	TAGGCCGAGAAAGTGTTGTG	Suissa et al. 2009. PLoS Genetics 5(5):e1000474
COII	ACAGATGCAATTCCCGGACG	GGCATGAAACTGTGGTTTGC	Suissa et al. 2009. PLoS Genetics 5(5):e1000474
ATP8	ATGCCCCAACTAAATACT	TTGTGGGGGGCAATGAATG	Uchuimi et al. 2010. NAR 38(16)
ATP6	CCCACTTCTTACCACAAGGC	GTAGGTGGCCTGCAGTAATG	Suissa et al. 2009. PLoS Genetics 5(5):e1000474
COIII	ACTTCCACTCCATAACGCTC	TGGCCTTGGTATGTGCTTTC	Suissa et al. 2009. PLoS Genetics 5(5):e1000474
ND3	CTACCATGAGCCCTACAAAC	ACTCATAGGCCAGACTTAGG	Suissa et al. 2009. PLoS Genetics 5(5):e1000474
ND4L	TATCGCTCACACCTCATATC	AGGCGGCAAAGACTAGTATG	Suissa et al. 2009. PLoS Genetics 5(5):e1000474
ND4	ACAAGCTCCATCTGCCTACG	TTATGAGAATGACTGCGCCG	Suissa et al. 2009. PLoS Genetics 5(5):e1000474
ND5	GGTTTCATCCTCGCCTTAGC	ACCTAATTGGGCTGATTTGC	Suissa et al. 2009. PLoS Genetics 5(5):e1000474
CYTB	CTCCCGTGAGGCCAAATATC	GAATCGTGTGAGGGTGGGAC	Suissa et al. 2009. PLoS Genetics 5(5):e1000474
ND6	ATTGGTGCTGTGGGTGAAAG	GGATCCTCCCGAATCAACCC	Suissa et al. 2009. PLoS Genetics 5(5):e1000474
NRF1	GGAGTGATGTCCGCACAGAA	CGCTGTTAAGCGCCATAGTG	Savagner et al. 2003. Biochem Biophys Res Com310(3)
POLG	GAGAAGGCCCAGCAGATGTA	ATCCGACAGCCGATACCA	Setzer et al. 2008. Am J. Pathol. 172(3)
TFAM	GACTTCTGCCAGCATAATAC	GAGTTCTGCCTGCTTTATG	Piechota et al. 2006. Acta Biochim Pol.53(3)

qPCR primers				
Probe	forward primer	reverse primer	reference	
18S	GAGAAACGGCTACCACATCC	GCCTCGAAAGAGTCCTGTAT	Suissa et al. 2009. PLoS Genetics 5(5):e1000474	
12S	GCTCGCCAGAACACTACGAG	CAGGGTTTGCTGAAGATGGC	Parone et al. 2008. PLoS One 3(9):e3257	
Α	GTGGCTTTGGAGTTGCAGTT		Antes et al. 2011. NAR 38(19):6466-6476	
B1	-	CAGCCACCATGAATATTGTAC	Antes et al. 2011. NAR 38(19):6466-6476	
B2		GAAGCAGATTTGGGTACCAC	Antes et al. 2011. NAR 38(19):6466-6476	

Table S2. RT-qPCR and qPCR primers. The sequence of forward and reverse primers for RT-qPCR (upper panel) and qPCR (lower panel) is indicated after the name of the probe that also indicats the gene analysed. Number in parenthesis indicate different sets used to test the same gene. The pair A-B1 amplifies a mtDNA region included in 7S, while the pair A-B2 amplifies a region beyond 7S in the direction of the H-strand (see scheme in Fig. 2E). Reference is indicated in the last column.