
Additional file 3 
 
Hardware 
 
Amplifier 
 
We tested four microphones that exhibited the best tradeoff between sensitivity and 
physical size: an original Bennet-Clark microphone modified from Radio Shack 270-
090[1] that was provided by Ron Hoy; the Knowles NR-23158[2]; the CUI Inc. CMP-
5247TF-K; and the PNM-3546L-R. The SNR for all four microphones is shown in Fig. 
S1. Two of these microphones exhibited particularly good signal-to-noise ratios: the 
NR-23158 and the CMP-5247K. The amplifier was designed to accommodate either 
of these microphones by the inclusion/exclusion of a single resistor in the circuit. 
 
 

 
 

Fig. S1. Signal (top), noise (middle) and SNR relative to the NR-
23158 (bottom) over the frequency range of 10 Hz to 10,000 Hz. 

 
We designed a custom electronic circuit to power the microphones and to amplify 
and filter their output signal (Fig. S2). Each channel uses a dual operational 
amplifier (OPA2376 Texas Instruments, or LT1884 Linear Technologies) to create a 
single-supply 3-pole high-pass, 2-pole low-pass filter. DC is first blocked with a high-
pass RC filter. The first opamp is non-inverting and applies a 630x gain with an 
additional capacitor in series at the bottom of the resistive divider to provide a 
second high-pass pole. Both low-pass poles are implemented in the second opamp, 
which is configured as a voltage-controlled voltage-source (VCVS) Butterworth filter 
with 1.6x of gain. A capacitor is added to the bottom of the second opamp's resistive 
divider to provide the third high-pass pole and block any DC offset. The gain is then 
set by the ratios between the R4 and R5 resistors, and can be easily changed to 



accommodate the intensity of sounds produced by different flies or insects. The low- 
and high-pass filter cutoff frequencies are determined by the products of five 
resistor-capacitor pairs.  
 
 

 
 

Fig. S2. Amplifier design. 
 

To record D. melanogaster song, we set the gain at 1000X and the low and 
high frequency filters at ~25 and ~2500 Hz. One advantage of our design is that 
altered cutoff filters or amplification can be accomplished easily by manually 
changing a few components of the amplifier. Pressure gradient microphones, such 
as those we used, display sensitivity proportional to frequency, a characteristic that 
Bennet-Clark purposely corrected for in his amplifier design[3]. Doing so, however, 
can attenuate high-frequency signals to such an extent that they disappear into the 
noise. Since we wanted to maintain the flexibility of our amplifier for recording both 
low and high frequency insect communication, we designed a flat bandpass filter. If 
needed for accurate amplitude measurements, the frequency response of the 
microphones can be compensated for later in software.  

Low-noise in the circuit is achieved by powering the microphones with a 
battery, whose level can be monitored with an LED indicator (MAX973, Maxim), and 
by using one layer of the PC board as a ground plane. Subsequent circuitry runs off 
of a 5V power supply, which we also regulate for low-noise (LT1129, Linear Tech.). 
We have found that the noise floor of our electronics is far below the noise floor of 
the microphone. We have also designed an onboard digital thermometer and 
hygrometer with a 30-sec update interval (SHT75, Sensirion). Up to five 
thermometer/hygrometers can be attached to a single board, including four remote 
devices that allow accurate measurement of temperature and humidity close to the 
courting flies. Finally, we used a commercial analog-to-digital converter to record 
the data (NI-USB-6259, National Instruments). The footprint of each channel is 1 



square inch on a 2-layer PC board, and the system could be miniaturized by using 
smaller components, by printing a 4-layer board, and/or by switching to a 
multiplexed design using the RHA2000 (Intantech.com). In addition, with the 
current design, a 2-channel version (Supplementary Material) can be powered 
completely from a 9V battery for use in the field by skipping the external digitizer 
and by plugging the output directly into the audio input line of a laptop computer. 
 
Courtship chamber 

 
We developed an acrylic platform for 16 chambers (Figure S3). To minimize 

extraneous vibrations, the courtship chambers are held snugly in the platform by 
the thumb screws that project through the bottom of each chamber assembly. Two 
platforms are placed flanking the DAQ, providing 32 recording positions. The entire 
apparatus, including the DAQ, or just the platforms containing the microphones can 
be enclosed in an acrylic box, and then mounted on an anti-vibration table. 

 

 
Fig. S3. Acrylic platform. 

 
We discovered that the use of pressure gradient microphones required 

special adaptations to the recording chambers to minimize the background noise. In 
particular, chambers were constructed with large air gaps immediately flanking the 
microphone position, which permits equilibration of air pressure between the front 
and back of the microphone (Fig. S4). We cut all acrylic for these chambers using a 
PLS4.75 Universal Laser System. Commercial laser cutters can be purchased 



relatively inexpensively, and are often available in campus engineering or similar 
shops. Alternatively, all of the parts can be milled in acrylic.  

Each courtship chamber is assembled from two pieces of cut or milled 
transparent acrylic, a steel divider, and four thumb screws (Fig. S4). The round 
arena is 3mm high with a wall sloped at an angle of 45 degrees [4]. The diameter is 
5mm at the bottom and 11mm at the top. Nylon mesh (350um opening) is glued to 
the bottom of the chamber to retain the flies in the arena and to correctly position 
the steel divider. The top acrylic cover contains two small, staggered holes for 
loading sequentially a male and a female into the arena on alternative sides of the 
steel divider. CorelDraw files containing plans for using a laser cutter to cut many 
chambers from a single piece of acrylic on a laser cutter are provided in file “designs 
of chamber_mesh_table .cdr”. 
 

 
Fig. S4. Courtship chamber parts 
 
 
Sound shielding 

 
The table is mounted to a breadboard with vibration absorbing feet. The 

whole apparatus is covered with 12mm thick acrylic box and tightly sealed the gap 



with a urethane foam tape to prevent noise. The CorelDraw plans for cutting the 
acrylic shielding are provided as file “sound shielding box.cdr”. As an alternative to 
the breadboard, the apparatus can be mounted on an air table, such as the TMC 66 
Series Table Top CSP. In practice, we set up the entire rig in a dedicated room 
separated from the rest of the lab by a heavy door. 
 
Pulse and sine song detection with FlySongSegmenter 
 

We chose wavelets for pulse detection because wavelets provide excellent 
temporal resolution for detecting short, discontinuous events, such as pulses. 
Wavelets of different frequencies can be convolved with a signal to determine how 
regions of a signal compare with the wavelet. We implemented a small number of 
simple heuristics to eliminate most false negative and false positive events. 
Segmentation prior to and after each step of heuristic winnowing is saved by 
FlySongSegmenter (FSS) and the results at each stage can be examined to assess the 
performance of the heuristic winnowing steps. We tuned the parameters of FSS for 
D. melanogaster song. For example, we chose the derivative of Gaussian (DoG) 
wavelet family for D. melanogaster pulse detection. The second derivative of this 
family is called the “Mexican hat” wavelet, which resembles a symmetrical version of 
a D. melanogaster pulse (Fig. 2). However, we found that substituting the DoG 
wavelets with Daubechies or other “pulse-shaped” wavelets did not yield 
significantly different results.  

For sine song detection, we found that multitaper spectral analysis provided 
a sensitive measure of periodic signals (such as sine song) even with low signal to 
noise. The human ear and multitaper analysis work in the frequency domain and, 
when the cyclical signal of sine song is averaged over multiple cycles, the fourier 
transform of the recording effectively reduces the noise relative to the signal, 
allowing detection of faint signals. The excellent sensitivity of multitaper spectral 
analysis to detect sine song allowed us to detect even sine song of such a low 
amplitude that it cannot be seen by visual inspection of recordings, although it can 
be heard by the human ear. The increased sensitivity of multitaper analysis comes at 
the cost of lower temporal resolution than wavelet analysis, and we indeed 
observed slightly lower accuracy in estimating sine train length relative to human 
annotation (Fig. 3e). To improve sine detection at the boundaries between sine and 
pulse song, we masked the pulse events (we set the values in these regions to 0) and 
performed multitaper spectral analysis on this masked song. FSS masks using 
Pulses.ModelCull2 by default, but any of the stages of pulse estimation can be user-
defined for masking. 
 
Details of pulse detection algorithm in FlySongSegmenter 
 

The parameters used in FSS have been optimized for detection of sine and 
pulse song for D. melanogaster song recorded in our laboratories. It is likely to work 
“out of the box” for other labs. Nonetheless, multiple options can be defined in the 
file params.m to optimize song segmentation. In addition, these options can be 



modified to segment song from some other Drosophila species. Here we discuss 
what we have found to be the most important parameters for pulse segmentation. 
 

1) Parameter fc (wavelet scales) defines the scales (and is input as frequencies 
in Hz) over which FSS performs the wavelet transformation. The wavelet 
transformation finds the best match at each point of the signal to a particular 
wavelet within the DoG family. The output of this is a single vector (the same 
length as the input signal itself) containing the maximum coefficients for any 
wavelet family member or scale – this vector is called cmhSong.  We 
recommend searching over the frequency range 100-700Hz, in steps of 25Hz. 
The program saves the frequency (of those used) that best matches the 
center of each pulse in an array called Pulses.Wavelet.fcmx.  

2) Parameter pWid is the approximate width of a D. melanogaster pulse in 
sample points. Since we have found that pulse shapes are reasonably 
stereotyped (Fig 4a), this is a simple value to specify (default = 4ms). pWid is 
used to define a window within which to test for local maxima. 

3) Parameter minIPI defines the minimum IPI expected in the data (default = 
10ms). minIPI defines a window within which the code searches for pulse 
peaks by identifying a peak in the smoothed maximum wavelet coefficients 
isolated by a trough in the smoothed maximum wavelet coefficients on either 
side. When the peak to trough distance is greater than a user-defined 
parameter called thresh (defined below), the pulse is accepted. In general, 
minIPI/2 should roughly equal pWid. 

4) Parameter thresh defines the minimum peak to trough distance for the 
smoothed maximum wavelet coefficients.  

 
Pulses that pass the initial identification based on the wavelet fit 

(Pulses.Wavelet) are passed through three rounds of winnowing. First, pulses with 
amplitude lower than the user defined parameter minAmplitude are removed, 
resulting in an array of putative pulses called Pulses.AmpCull. Second, pulses are 
winnowed based on parameter maxIPI to eliminate singlet events, which results in 
an array called Pulses.IPICull. All three structures are saved and returned to the user. 
Further model-based winnowing, described in the next section, can be performed in 
an identical manner on each (or all) of these three arrays. 
 
Estimation and use of pulse models 
 

Detection of pulse song using continuous wavelet transform failed to detect 
very few pulses, resulting in few false negative calls (Fig. 3). However, the results of 
the raw continuous wavelet transform and even several heuristic winnowing steps 
resulted often in many false positive events detected. Most of these false positive 
events probably reflect other sounds made by flies in the chamber, including 
walking, grooming, and jumping, and these other events tend to have different 
spectral characteristics. We reasoned that a model-based approach to winnowing 
pulses that were identified by the continuous wavelet transform might provide 
some discrimination between true pulses and non-pulse events. We therefore 



constructed models of pulse song from a large sample of putative pulses reported by 
Pulses.IPICull. We then estimated the log likelihood ratio that each pulse in a test 
song fit the pulse model compared with a simple model of noise. This modeling 
required consideration of several aspects of the biophysics of the singing fly. 

The singing fly wing is a dipole source with some unusual acoustic properties 
[5, 6]. First, the amplitude of courtship song recorded by pressure gradient 
microphones is influenced both by the distance of the wing from the microphone 
and the orientation of the fly relative to the microphone [5, 6]. Second, the phase of 
individual song events depends on whether the (directional) microphone is 
positioned in front of or behind the fly. These phase differences were corrected by 
inverting pulses with negative maximum amplitude. Third, in flying flies, the second 
harmonic can exhibit more power than the fundamental frequency along the long 
axis of the wing [6]. We are not aware of any published reports on sound radiation 
around a singing fly, but we have found evidence for song pulses that look more like 
pulses expected if the second harmonic dominated occasionally. While we have not 
confirmed that these occur when the microphone is positioned at approximately 90° 
to the long axis of the body, we did treat these events separately during construction 
of pulse models. 

Pulse models were estimated first by aligning all individual pulse events and 
rescaling by their root mean square (RMS). Pulses with negative maximum absolute 
amplitudes were inverted. Approximately 17% of pulses fit the initial model poorly. 
Upon closer examination, it appeared that the carrier frequency of these outlier 
pulses was approximately double the carrier frequency of the initial model. 
Therefore, pulse events were pooled as either first or second-harmonic events and 
separate models were built for each harmonic (Fig. S5). 
 
 
 

 
Figure S5. Pulse models estimated from 262,466 individual pulse 
events. (a) The first harmonic model was generated from the 
225,168 events that best fit a single-harmonic model. (b) The 
second harmonic model was generated from 37,298 events that 
best fit the second-harmonic model. 
 



A noise model was calculated as an event with mean 0 and the same standard 
deviation as the pulse model. We then calculated the log likelihood ratio 
(log(Lik(event|pulse_model) – log(Lik(event/noise_model))) for each event 
identified in Pulses.AmpCull and in Pulses.IPICull, resulting in Pulses.ModelCull and 
Pulses.ModelCull2, respectively. Pulses.ModelCull events with a log likelihood ratio 
greater than 0 were taken as "true pulses" and included in all subsequent analyses 
of pulses. 
 
Correlations between song parameters  

Pulse train lengths were calculated by collecting consecutive pulses with IPIs 
within the 99% confidence intervals for IPIs defined by the Gaussian mixture 
models discussed in the main text (Fig. 4b). Sine trains were estimated directly from 
the consecutive temporal windows of sine song detected by FlySongSegmenter. We 
tested for correlations between all possible comparisons of pulse and sine carrier 
frequency, inter-pulse interval, and sine and pulse train lengths (Table S1).  
 
Table S1. Spearman’s rank correlation coefficient (rho in upper diagonal) and 
uncorrected P-values (in lower diagonal). 
 Pulse 

Carrier 
Frequence 

Sine Carrier 
Frequency 

Inter-pulse 
Interval 

Sine Train 
Length 

Pulse Train 
Length 

Pulse 
Carrier 
Frequence 

 -0.1568 -0.1581 -0.4603 -0.2833 

Sine Carrier 
Frequency 

0.1853      -0.2598 0.3993  0.3928 

Inter-pulse 
Interval 

0.1977     0.0324      0.0205 -0.2206 

Sine Train 
Length 

0.0000     0.0004     0.8680      0.4667 

Pulse Train 
Length 

0.0159     0.0006     0.0729     0.0000      

 
Temporal dynamics of song statistics 

We assessed periodicity in song statistics with the Lomb-Scargle 
Periodogram [7, 8] using the Matlab code written by Christos Saragiotis 
(www.mathworks.com/matlabcentral/fileexchange/22215-lomb-normalized-
periodogram). This approach provides accurate estimates of periodicity in time 
series data in which samples are spaced unequally.  

To assess the power of the Lomb-Scargle periodogram coupled with sample 
sizes equivalent to our samples to detect periodicity in the expected range of 0.016 – 
0.022 Hz [9, 10] if it existed, we performed simulations. We resampled the time 
stamps of the IPIs in our songs and simulated periodic variation in the IPI of 0.018 
Hz, which is equivalent approximately to a period of 55 sec. To assess the 
importance of the signal to noise ratio (SNR) to our ability to detect this periodicity, 



we simulated that the IPIs were sampled from a period distribution with added 
Gaussian noise in the SNR range of 0.1 to 2, in steps of 0.1. Summed over all 
simulated recordings, the Lomb-Scargle periodogram found significant power in the 
range of 0.016 – 0.022 Hz in more than 80% of recordings with a SNR > 1 (Fig. S6). 
We conclude that we could have detected periodicity in the IPI on the order of 
second or minutes in our data if the SNR of the periodicity was at least 1. 

 

 
Figure S6. Power to detect significant peaks (P < 0.05) in the range of 
0.016 – 0.022 Hz in the Lomb-Scargle periodograms from simulated data 
as the SNR varies from 0.1 to 2. 
 

Periodicity in sine song fundamental frequency 
 

We also tested for periodicity in sine song fundamental frequency using the 
Lomb-Scargle periodogram. Many songs displayed unique periodicities (e.g. Fig. S7), 
but we did not detect any obvious periodicities that were shared across individuals. 
Sine song fundamental frequency does show interesting patterned modulation (Fig. 
6), and we suspect that this modulation leads to significant unique signals of 
periodicity in many of the songs. 
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Figure S7. P-values of local peaks in Lomb-Scargle periodograms of sine 
song fundamental frequency for 75 recordings of D. melanogaster over the 
range of 0 to 1 Hz. 
 
To determine our power to detect song-wide periodic rhythms in sine song, 

we performed simulations identical to the simulations for interpulse interval 
described above, except that the event times were taken from the actual sine song 
events detected in our dataset and we simulated a periodic rhythm of 0.2 Hz, 
corresponding to a period of 5 seconds. An example of a simulated data set with a 
SNR of 0.5 is shown in Fig. S8. The significance of peaks from the Lomb-Scargle 
periodograms of simulated datasets are shown in Fig. S9. For the sine song 
simulations, Lomb-Scargle periodograms identified significant (P < 0.05) peaks 
between 0.18 to 0.22 HZ in all simulations, from SNR = 0.1 to SNR = 2. Thus, our sine 
song datasets were sufficiently large that we could have detected significant 
periodicity with the Lomb-Scargle periodogram even if the SNR of the periodicity 
was as low as 0.1. 

 
 



 
Fig. S8. Simulated data set of a periodic cycle of 0.2Hz with a SNR = 1. 

 

 
 

 
Fig. S9. P-values for local peaks in the Lomb-Scargle periodograms over all 
simulated song in the range of 0 – 1 Hz, with a simulated periodicity of 0.2 Hz 
and a SNR = 1. 

 



 
 

Fig. S10. Patterns of sine song carrier frequency across trains within a song 
bout across five strains of D. melanogaster. 
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