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1. Cauchy Formula. The problem of determining the perimeter and
the area of the convex hull of any 2D stochastic process [x(τ), y(τ)]
with 0 ≤ τ ≤ t can be mapped to the problem of computing the
statistics of the maximum and the time of occurrence of the
maximum of the 1D component process x(τ) (1, 2, 3). This goal is
achieved by resorting to a formula by Cauchy, which applies to any
closed convex curve C.
A sketch of the method is illustrated in Fig. S1. Choose the

coordinates system such that the origin is inside the curve C, and
take a given direction θ. For fixed θ, consider a stick perpen-
dicular to this direction, and imagine bringing the stick from
infinity; stop on first touching the curve C. At this point, the
distance M(θ) of the stick from the origin is called the support
function in the direction θ. Intuitively, the support function
measures how close one can get to the curve C in the direction θ,
coming from infinity. After the support function M(θ) is known,
then Cauchy equations (4, 5) give the perimeter L and the area
A enclosed by C, namely

L=
Z2π
0

MðθÞdθ

and

A=
1
2

Z2π
0

h
M2ðθÞ− �M′ðθÞ�2idθ; [S1]

where M′(θ) = dM/dθ. For example, for a circle of radius R = r,
M(θ) = r, and one recovers the standard equations: L = 2πr
and A = πr2. When C is the convex hull associated with the
process at time t, we first need to compute its associated sup-
port function M(θ). A crucial point is to realize that actually
M(θ) = max0 ≤ τ ≤ t[x(τ)cos(θ) + y(τ)sin(θ)] (1, 2). Further-
more, if the process is rotationally invariant, any average is in-
dependent of the angle θ. Hence, for the average perimeter, we
can simply set θ = 0 and write 〈L(t)〉 = 2π〈M(0)〉, where brack-
ets denote the ensemble average over realizations. Similarly,
for the average area, 〈A(t)〉 = π[〈M2(0)〉 − 〈M′(0)2〉]. Clearly,
M(0) =max0 ≤ τ ≤ t[x(τ)] is then the maximum of the 1D component
process x(τ) for τ ∈ [0, t]. Assuming that x(τ) takes its maximum
value x(tm) at time τ = tm (Fig. 4), then, M(0) = x(tm) = xm(t), and
M′(0) = y(tm). [Actually, tm implicitly depends on θ; hence, for-
mally,M′ðθÞ= − xðtmÞsinðθÞ+ yðtmÞcosðθÞ+ dtm

dθ
dzθðtÞ
dt jt=tm . Nonethe-

less, because zθ(t) is maximum at t = tm, by definition,
dzθðtÞ=dtjt=tm = 0.] Now, by taking the average over Cauchy formu-
las and using isotropy, we simply have Eqs. 5 and 6 from the text
for the mean perimeter and the mean area of the convex hull C at
time t. Note that this argument is very general and applicable to
any rotationally invariant 2D stochastic process. Because the
branching Brownian motion with death is rotationally invariant,
we can use these formulae.

2. Numerical Methods. Numerical integration. Eqs. 9 and 14 in the text
have been integrated numerically by finite differences in the fol-
lowing way. Time has been discretized by setting t= ndt, and space
has been discretized by setting x = idx, where dt and dx are small
constants. For the sake of simplicity, here, we consider the case
R0 = 1. We, thus, have

Qn+1ðiÞ=QnðiÞ+ γdt½1−QnðiÞ�2 +D
dt

ðdxÞ2 ½Qnði+ 1Þ− 2QnðiÞ

+Qnði− 1Þ� [S2]

and

Tn+1ðiÞ=TnðiÞ+ 2γdt  TnðiÞ½QnðiÞ− 1�+D
dt

ðdxÞ2 ½Tnði+ 1Þ− 2TnðiÞ

+Tnði− 1Þ�+ dt
dx

½TnðiÞ−Tnði− 1Þ�: [S2]

As for the initial conditions, Q0(0) = 0, Q0(i > 0) = 1, and T0(i) =
0 ∀i. The boundary conditions at the origin are Qn(0) = 0 and
Tn(0) = 0. To implement the boundary condition at infinity, we
imposeQn(imax)= 1 and Tn(imax)= 0 ∀n, where the large value imax
is chosen so that Tn(imax) − Tn(imax − 1) < 10−7. We have verified
that numerical results do not change when passing to the tighter
condition Tn(imax) − Tn(imax − 1) < 10−9.
AfterQn(i) and Tn(i) are known, we use Eqs. 10 and 15 from the

text to determine the average perimeter and area, respectively.
Monte Carlo simulations. The results of numerical integrations have
been confirmed by running extensive Monte Carlo simulations.
Branching Brownian motion with death has been simulated by
discretizing time with a small dt: in each interval dt, with probability
bdt, the walker branches and the current walker coordinates are
copied to create a new initial point, which is then stored for being
simulated in the next dt; with probability γdt, the walker dies and is
removed, and with probability 1 − (b + γ)dt, the walker diffuses:
the x and y displacements are sampled from Gaussian densities of
zero mean and SD

ffiffiffiffiffiffiffiffiffiffi
2Ddt

p
, and the particle position is updated.

The positions of all of the random walkers are recorded as
a function of time, and the corresponding convex hull is then
computed by resorting to the algorithm proposed in ref. 6.
Perimeter statistics. To complete the analysis of the convex hull
statistics, in Figs. S2 and S3, we show the results for the perimeter.

3. Analysis of tm. In the critical case R0 = 1, the stationary joint
probability density P∞(xm, tm) satisfies (on setting ∂Pt/∂t = 0 in
Eq. 12 in the text)

∂
∂tm

P∞ðxm; tmÞ=

2
664D ∂2

∂x2m
−

2γ�
1+

ffiffiffiffiffiffi
γ

6D

r
xm

�2
3
775P∞ðxm; tmÞ: [S4]

For any xm > 0, we have the condition P∞(xm, 0)= 0. The boundary
conditions for Eq. S4 are P∞(xm → ∞, tm) = 0 and P∞ð0; tmÞ=
q∞ð0ÞδðtmÞ= 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ=ð6DÞp

δðtmÞ. We first take the Laplace transform
of Eq. S4, namely

~P∞ðxm; sÞ=
Z∞
0

e−stmP∞ðxm; tmÞdtm: [S5]

Hence, for all xm > 0,

D
s

∂2

∂x2m
~P∞ðxm; sÞ=

2
666641+

12

s
D

 ffiffiffiffiffiffi
6D
γ

s
+ xm

!2

3
77775~P∞ðxm; sÞ; [S6]
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where we have used the condition P∞(xm, 0) = 0 for any xm > 0.
This second-order differential equation satisfies two boundary
conditions: ~P∞ð∞; sÞ= 0 and ~P∞ð0; sÞ= 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ=ð6DÞp

. The latter
condition is obtained by Laplace transforming P∞ð0; tmÞ=
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ=ð6DÞp

δðtmÞ. By setting

z=

 ffiffiffiffiffiffi
6D
γ

s
+ xm

! ffiffiffiffi
s
D

r
; [S7]

we rewrite the equation as

∂2

∂z2
~P∞ − ~P∞ −

12
z2

~P∞ = 0: [S8]

On making the transformation ~P∞ðzÞ=
ffiffi
z

p
FðzÞ, the function F(z)

then satisfies the Bessel differential equation:

d2

dz2
FðzÞ+ 1

z
d
dz
FðzÞ−

�
1+

49
4z2

�
FðzÞ= 0: [S9]

The general solution of this differential equation can be expressed
as a linear combination of two independent solutions: F(z) =
AI7/2(z) + BK7/2(z), where Iν(z) and Kν(z) are modified Bessel
functions. Because Iν(z) ∼ ez for large z, it is clear that, to satisfy
the boundary condition ~P∞ð∞; sÞ= 0 [which means F(z → ∞) =
0], we need to choose A = 0. Hence, we are left with F(z) =
BK7/2(z), where the constant B is determined from the second
boundary condition ~P∞ð0; sÞ= 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ=ð6DÞp

. By reverting to the
variable xm, we finally get

~P∞ðxm; sÞ= 2
ffiffiffiffiffiffi
γ

6D

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

γ

6D
xm

r K7=2

�� ffiffiffiffiffiffi
6D
γ

r
+ xm

� ffiffiffiffi
s
D

r �

K7=2

� ffiffiffiffiffi
6s
γ

r � : [S10]

Now, we are interested in determining the Laplace transform of
the marginal density ~p∞ðsÞ=

R∞
0 e−stmp∞ðtmÞdtm, where p∞ðtmÞ=R∞

0 P∞ðxm; tmÞdxm. Taking Laplace transform of this last relation
with respect to tm gives ~p∞ðsÞ=

R∞
0

~P∞ðxm; sÞdxm. After we know
~p∞ðsÞ, we can invert it to obtain p∞(tm). Because we are interested

only in the asymptotic tail of p∞(tm), it suffices to investigate the
small s behavior of ~p∞ðsÞ. Integrating Eq. S10 over xm and taking
the s → 0 limit, we obtain, after some straightforward algebra,

~p∞ðsÞ= 1+
3
5γ
s ln ðsÞ+⋯: [S11]

We further note that

Z∞
0

e−stm t2mp∞ðtmÞdtm =
d2

ds2
~p∞ðsÞ ’

3
5γs

; [S12]

which can then be inverted to give the following asymptotic be-
havior for large tm:

p∞ðtmÞ ’ 3
5γt2m

: [S13]

Analogously as for hx2mi, the moment 〈tm〉 → ∞ because of the
power-law tail p∞ðtmÞ∝t−2m . Hence, we need to compute 〈tm〉 for
large but finite t: in this case, the time-dependent solution dis-
plays a scaling behavior:

ptðtmÞ ’ p∞ðtmÞg
	tm
t



; [S14]

where the scaling function g(z) satisfies the conditions g(z� 1) ’
1 and g(z � 1) = 0. Much like in expression 17 in the text for the
marginal density qt(xm), we have a power-law tail of pt(tm) for
large tm that has a cutoff at a scale t*m ∼ t, and g(z) is the cutoff
function. As in the case of xm, we do not need the precise form of
g(z) to compute the leading term of the first moment htmi=R∞
0 ptðtmÞtmdtm for large t. Cutting off the integral at t*m = c1t
[where c1 depends on the precise form of g(z)] and performing
the integration gives

htmi ’
Z t

0

tmp∞ðtmÞdtm ’ 3
5γ

ln t; [S15]

which is precisely the result announced in expression 19 in the text.
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Fig. S1. Cauchy construction of the 2D convex hull, with support function M(θ) representing the distance along the direction θ.
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Fig. S2. (Left) The average perimeter〈L(t)〉of the convex hull as a function of the observation time. For the parameter values, we have chosen D = 1/2 and b =
R0γ = 0.01. We considered five different values of R0. We have obtained these results by two different methods. (i) One method is by the numerical integration
of Eq. S9 and using Eq. 10 in the text (with the choices dt = 0.003125 and dx = 0.1768). These results are displayed as solid lines. (ii) Another method is by Monte
Carlo simulations of the 2D branching Brownian motion with death with the same parameters and the choice of the Monte Carlo time step dt = 0.25 with the
results averaged over 105 samples. Monte Carlo simulations are displayed as symbols. The dashed lines represent the asymptotic limits as given in Eq. 1 in the
text for the critical case R0 = 1. (Right) Distribution of the perimeter of the convex hull for the critical case R0 = 1, with γ = 0.01 and D = 1/2, as obtained by
Monte Carlo simulations with time step dt = 1 and t = 4 × 105. The number of realizations is 2 × 106. The dashed line in Right corresponds to the power-law L−3

(up to an arbitrary prefactor).
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Fig. S3. The time behavior of the average perimeter in the supercritical regime for different values of R0 > 1. Dashed lines represent the asymptotic scaling as
in Eq. 3 in the text. The red curve corresponds to the critical regime.
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