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Influence of Biofilm Streamers on the Permeability of a Channel. We
consider two elementary cases of biomass distribution to evaluate
their effect on the permeability of a channel subjected to a pressure-
driven flow. In one case, the biomass forms a thin film on the surface
of the channel (Fig. S2A), whereas in the second case the biomass
forms a single biofilm streamer in the center of the channel (Fig.
S2B). For simplicity, we model the channel as a cylindrical pipe
of radius ρ.
In the case of the wall-attached biofilm, the biofilm thickness

is eρ, where 0 ≤ e � 1. For steady pressure-driven flow in a cy-
lindrical channel, the classical Poiseuille formula relates the flow
rate Q0 to the total pressure drop across the whole channel per
unit length Δptot/L, given by

Q0 =
π

8
ρ4Δptot
ηL

; [S1]

where η is the dynamic viscosity of the fluid. When biofilm ac-
cumulates as a thin film on the walls of the channel, as indicated
in Fig. S2A, the flow rate is obtained by using the new radius
ρ(1 − e). Therefore, for the identical pressure drop per unit
length, the flow rate in the presence of a surface-attached biofilm
Qfilm satisfies

Qfilm

Q0
= ð1− eÞ4; [S2]

which reduces to Qfilm/Q0 ≈ 1 − 4e, with the assumption e � 1.
In the case of a biofilm streamer positioned in the middle of

the channel, we treat the streamer as a cylinder of radius R with
a no-slip boundary. As shown in Movie S2, the biofilm streamer
slowly moves along the flow, with a migration speed that is much
lower than the flow speed. This finding justifies the assumption
that the streamer provides a no-slip surface. The flow geometry
thus reduces to the standard problem of a pressure-driven flow
between two coaxial cylinders (1). Using cylindrical coordinates
(radial coordinate r), the flow velocity along the direction of the
cylinders is
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This velocity field can be integrated over the annular cross-
section of the concentric cylinders to yield the flow rate in the
presence of a streamer Qstreamer, which is given by

Qstreamer

Q0
=
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ρ

�4

½1− lnðR=ρÞ�+ 1+ lnðR=ρÞ− 2
�
R
ρ

�2

lnðR=ρÞ : [S4]

To compare the flow rate reduction caused by the wall-attached
biofilm with the flow-rate reduction caused by the streamer, we
fix the streamer radius R such that the biomass in the streamer is
equal to the biomass in the wall-attached biofilm. Due to cy-
lindrical symmetry, 2πρ2e = πR2, which can be rearranged to give
R = ρ(2e)1/2. For small biofilms, e = 0.01 � 1, we find

Qfilm

Q0
= 1− 4e= 0:96; [S5]

Qstreamer

Q0
= 1+

2
ln  e

= 0:51: [S6]

Thus, a thin, wall-attached biofilm on the surface of the channel
leads to a reduction in flow rate of a few percent, whereas the
same biomass bound in a biofilm streamer along the centerline
of the channel reduces the flow rate by ≈50%.

Growth of a Solid Biofilm Streamer. We consider a solid biofilm
streamer with its axis oriented transverse to the flow direction, as
in Fig. 3A. This orientation is motivated by Fig. S3, which shows
that the streamers in our microfluidic system are partially trans-
verse to the flow direction. We assume that the streamer radius R
is much smaller than the channel diameter so that we can neglect
the presence of the confinement and treat the streamer as a solid
cylinder in an unbounded flow. We further assume that the
streamer is very long so that the flow is essentially 2D and only
varies in the plane that is orthogonal to the streamer axis.
For the low Reynolds numbers (Re) considered in our experi-

ments, the flow around the streamer is laminar (Re = 0.1−2 for
different flow rates). Cells that are carried by the flow can move
across streamlines by the intrinsic diffusion of their cell body as
well as their self-generated motility, which leads to an effective
diffusion constant D. Diffusion across streamlines in the vicinity
of the streamer can cause a cell to come in contact with the
streamer, in which case we assume that there is a probability α
that the streamer absorbs the cell. If the cell is absorbed by the
streamer, the streamer expands its cross-sectional area by an
area A. The growth rate of the cross-sectional area of the
streamer is therefore given by

2πR
dR
dt

= αI   A; [S7]

where I is the number of cells per unit length of the streamer
that come in contact with the streamer per unit time, and t is
time. As cells are constantly absorbed by the streamer, the cell
concentration c is expected to change close to the streamer, which,
by Fick’s law, causes a flux of cells −D∇c. This flux can be inte-
grated over the cross-sectional area of the streamer S to obtain

I = −D
Z �

∂c
∂r

�
r=R

dS; [S8]

I =DC    Nu; [S9]

where C is the cell concentration in the bulk far away from the
streamer, and Nu is the mass transfer Nusselt number (also known
as the Sherwood number). As we expect the growth rate of
the streamer dR/dt to be much smaller than the average flow
speed V, the Nusselt number is governed by the time-independent
advection–diffusion equation

D∇2c= ðu·∇Þc; [S10]

where u is the flow field around the streamer. The solution for u
was obtained by Tomotika and Aoi (2). Using this solution for u,
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Friedlander (3) solved Eq. S10 for c and showed theoretically
that

Nu ’
�

V   R
Dð2− log ReÞ

�1=3

: [S11]

This result for Nu was confirmed experimentally for our values
of the Reynolds number (4). Using Re ≈ 1, we obtain

I ’ 0:8 C
�
D2RV

�1=3
: [S12]

To solve Eq. S7 for R(t), we need to obtain an expression of
Eq. S12 in terms of R, which reduces to finding an expression
for V in terms of R. Experimental studies on cylinders oriented
transverse to the flow direction have shown that the drag force
on the cylinder per unit length F obeys

F ≈ 7  ηV [S13]

for our values of the Reynolds number (5), which is consistent
with theoretical results for F that are based on the solution for
u (2). For an unbounded flow, the pressure difference Δp that
drives the flow is equal to the pressure drop across the streamer.
The streamer initiates across one turn of the model microfluidic
channel and the pressure difference that drives the flow for
such a section of the channel is Δp ≈ Δptot/35 (see Fig. 1A for an
image of the channel, which has about 35 turns). As the pressure
drop across the streamer occurs over a length scale R, the drag
per unit length due to Δp is

F ≈E  R Δp; [S14]

where E = O(1) ∼ 1, analogous to the expression for the drag on
a sphere. Combining our equations for F, we obtain

V ≈
RΔp
7η

: [S15]

This expression for V is a peculiarity of 2D fluid mechanics, but
can be substituted into Eq. S12 to obtain I ≈ 0.4 C(Δp D2R2/η)1/3.
This function for I can then be used to rearrange Eq. S7, yielding

dR
dt

=BR−1=3; [S16]

where the constant is B ≈ 0.07αCA(D2Δp/η)1/3. This equation for
dR/dt can be solved easily to obtain

RðtÞ ≈
�
4
3
Bt+ const

�3=4

: [S17]

Based on our expression for B and Eq. S1 we can estimate
the magnitude of B. Using our experimental parameters C = 2
× 10−4 cells/μm3, A = 2 μm3, ρ = 75 μm, Q0 = 10−9 m3/min, L = 2
× 10−2 m, D = 10−10 m2/s, and Δp ≈ Δptot/35, we obtain B ≈ α
20 μm4/3/h. To understand the meaning of this value for B, we
can complete the solution for R(t) by fixing the integration con-
stant in Eq. S17 by setting R(t = 0) = 10 μm (motivated by Fig. S3).
The dynamics of R(t) for this condition are plotted in Fig. S5A for
the upper bound α = 1 (blue line) and α = 0.1 (green line), which
assumes that 100% or 10% of the cells that come in contact with
the streamer are absorbed, respectively. To translate the dynamics
of R(t) into the dynamics of the flow rateQ(t), we note that Fig. S3
shows that the streamer is oriented partly transverse and partly
along the flow direction. We can therefore get a rough estimate

of Q(t) by using Eq. S4, which was derived for a streamer that is
coaxial with a channel of circular cross-section. The resulting Q(t)
is plotted for α = 1 and α = 0.1 in Fig. S5B.
Fig. S5 shows that R(t) and Q(t) predicted by this model change

too slowly to fully account for the rapid clogging transitions
we observe experimentally. Although growth of streamers by
the advection–diffusion process discussed in this section is likely
to take place, the majority of the streamer growth is likely to be
due to other mechanisms.

Growth of a Porous Biofilm Streamer. As in the discussion of the
growth rate of a solid streamer above, we assume that the porous
streamer is oriented transverse to the flow direction (motivated
by Fig. S3) and that the streamer is very long so that the flow
field only varies in the plane that is orthogonal to the streamer
axis. The streamer is now assumed to be porous so that liquid
and cells can flow through it, yet we still assume that the streamer
radius is much smaller than the channel diameter so that we can
neglect the effects of the channel walls.
If a cell that is caught by the streamer adds an area A to the

cross-sectional area of the streamer, the rate of expansion of
the streamer cross-section is given by

2πR
dR
dt

= βI   A; [S18]

analogous to Eq. S7 for the solid streamer. However, now I is
the number of cells per unit length of the streamer that flow
through the streamer per unit time, and β is the fraction of these
cells that get caught in the streamer. For simplicity, we calculate
an upper bound on the streamer growth rate by assuming that
the streamer is entirely transparent, i.e., cells flow through it at
the same speed as if there was no streamer present. This means
that there is a flux of cells J = CV through the porous streamer,
which results in

I = J   2R: [S19]

To solve the above differential equation for R(t), we again use
Eq. S15 to obtain I ≈ 2CΔpR2/η, which we substitute into Eq. S18
to obtain

dR
dt

≈
βACΔp
7πη

R; [S20]

which can be solved to give

RðtÞ ∝ exp
�

t
τtheory

�
; [S21]

τtheory ≈
7πη

βACΔp
: [S22]

We further note that Δp is proportional to the flow rate before
the appearance of the streamer Q0 (Eq. S1). The flow rate Q0, in
turn, is simply the average flow speed in the channel before the
appearance of the streamer U multiplied by the cross-sectional
area of the channel. The timescale of the exponential growth of
the streamer can therefore be rewritten as

τtheory ∝
1
CU

: [S23]

The dependence τtheory ∝ C−1 results from the assumption that
the flux of cells that become caught in the streamer is simply
proportional to the flux of cells that flow through the streamer,
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i.e., I = 2RVC. Movie S2 illustrates that only a very small fraction
of the cells actually gets caught. However, assuming that only 1%
of the cells flowing through the streamer get caught (by setting
β = 0.01) will not change the final functional dependence of
τtheory on C, except for a numerical prefactor. To obtain a relation
that is closer to the experimental result τ ∝ C−0.6, the number
of cells that get caught must depend on the cell density. Such
cell-density–dependent effects are plausible as 6–10% of the
Pseudomonas aeruginosa genome is regulated by quorum sensing
(6, 7), which may include genes responsible for adhesion to an
existing biofilm.
We can estimate the magnitude of τtheory using Eqs. S22 and

S1, and our experimental parameters C = 2 × 10−4 cells/μm3,
A = 2 μm3, ρ = 75 μm, Q0 = 10−9 m3/min, and L = 2 × 10−2 m.

Bearing in mind that we derived an upper bound on the streamer
growth rate in this model (see the comment above Eq. S19), which
yields a lower bound on τtheory, we can use these parameter values
to obtain τtheory ∼ 0.02/β h. Although the exact value of β is un-
clear, Movie S2 illustrates that only a very small fraction of the cells
gets caught in the streamer, and values of β ∼ 10−2 appear plausible,
which yield values for τtheory that are on the same order of mag-
nitude as experimentally observed clogging timescales τ (Fig. 3).
Fig. S5A shows R(t) for a porous streamer (Eq. S21) using

R(t = 0) = 10 μm as an initial condition. Both models make strong
simplifying assumptions, yet Fig. S5 shows that the model based
on a porous streamer predicts a faster increase in R, which leads
to a faster decrease of Q, compared with the model that describes
streamer growth as an advection–diffusion process.
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Fig. S1. Experimental setup. Midlogarithmic phase P. aeruginosa cells were loaded into a reservoir, with a large cross-sectional area at the air–water interface.
The wide-bore tubing connects the microfluidic channel with the reservoir and the effluent collection dish, which is placed on an analytical balance. The height
difference Δh between the reservoir suspension and the effluent collected on the analytical balance is proportional to the applied pressure. Data of the
weight of the effluent as a function of time are converted on a computer to the flow rate as a function of time. The biofilm in the microfluidic channel, filter
mesh, or stent, is imaged using a confocal or epifluorescence microscope.

Fig. S2. Model geometries for calculating the influence of biofilm streamers on permeability. (A) Biofilm (green) forms as a thin film of thickness eρ on the
walls of a cylindrical channel with radius ρ. (B) Biofilm forms as a cylindrical streamer that is coaxial with the channel.
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Fig. S3. Biofilm streamer initiation image sequence. Images were acquired at 30 frames per second using bright-field microscopy, and a background image
was subtracted to visualize newly appearing structures such as streamers. The background image is made from the average of the 10 images taken 5 s before
each image shown. Movie S2 shows the same process. (A) A thin streamer has formed, originating from the left corner. The streamer is not yet attached to
the right corner. It appears to mostly consist of EPS, and only three cell/EPS clusters are visible. Red arrows point to these clusters. (B) The streamer has attached
to the right corner, forming a biofilm bridge between the corners. The red arrows point to the same three clusters as in A, indicating that the streamer is
now largely transverse to the flow direction in contrast with A. EPS: extracellular polymeric substances. (C) Additional cell/EPS clusters attach to the streamer, as
indicated by the red arrows. At this stage, the streamer is flexible and vibrates in the flow. (D) The streamer has accumulated additional biomass and is less
flexible. (E) Small secondary streamers are dragged out of the main streamer and appear to form a sieve-like network. Red arrows point to some of these
secondary streamers. (F) The mesh of streamers that appeared in E has accumulated more biomass and new secondary streamers emerge.

Fig. S4. Growth rate changes due to tetracycline. P. aeruginosa was grown at 22 °C in 96-well plates without shaking. By acquiring OD600 measurements
every 20 min, growth curves were obtained from which we extracted the maximum growth rate for each well. Black error bars correspond to the SD of
the growth rate observed in n = 32 different wells for each concentration of tetracycline, and red error bars correspond to the SEM. The minimum inhibitory
concentration of tetracycline for P. aeruginosa is 32 μg/mL (1, 2).
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Fig. S5. Model results for dynamics of streamer growth and flow rate decrease. The model for streamer growth based on a porous streamer predicts the
red lines in A and B, assuming τtheory = 1 h. The model based on an advection–diffusion process predicts the blue lines (for α = 1) and the green lines (for α =
0.1). Using the parameter α = 1 leads to an upper bound on the streamer growth rate, as it implies that 100% of the cells that come in contact with the
streamer are absorbed by it. Both models assume an initial condition of R(t = 0) = 10 μm. To estimate a conversion of the results for R(t) into the flow rate
Qstreamer, we used Eq. S4, which was derived for a streamer that is coaxial with a channel of circular cross-section, for which we assume a radius ρ = 75 μm. Both
models make strong simplifying assumptions, yet the model based on a porous streamer yields results that more closely resemble the experimental dynamics.
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Fig. S6. Biomass increase for the ΔflgK and ΔpelA strains compared with the wild type. The flagella mutant strain displays a delay in biomass accumulation for
the first ∼10 h, but then increases in biomass with a doubling time comparable to the wild type. After ∼35 h, the ΔflgK strain develops a streamer, which leads
to a rapid increase in biomass. Over the same time the ΔpelA strain does not develop a significant amount of biomass.
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Fig. S7. Mutants get caught in wild-type EPS. For the first 43 h, PA14-gfp is flowed through the channel, and cells build a wall-attached biofilm. The in-flowing
culture is then exchanged to only contain cells expressing mCherry. The GFP and mCherry color intensity is scaled between the minimum and maximum pixel
intensity in each channel. (A) The ΔflgK mCherry strain forms streamers after 5 h. (B) The ΔpilC mCherry strain forms streamers after 7 h. (C) The ΔlasR mCherry
strain forms streamers after 16 h. (D) A part of the PA14-gfp biofilm detached from the wall at 17.5 h and triggered streamer formation of the ΔpelA mCherry
strain. Scale bar: 200 μm.

Fig. S8. Changes in the reservoir culture. (A) We simultaneously monitored the OD600 and CFU concentration of P. aeruginosa wild-type cultures in n = 6
independent reservoirs over time. Both measurements remain roughly constant for ∼3 d. (B, C) The clogging duration τ and time of clogging T are similar for
experiments in which the culture in the reservoir is exchanged every 24 h, compared with experiments in which the culture is not exchanged.
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Movie S1. Flow brings bacteria to the clogging site. For the first 43 h, P. aeruginosa expressing gfp are flown through the channel. The in-flowing culture is
then exchanged to contain only cells that make the red fluorescent protein mCherry, but are otherwise isogenic. This movie illustrates that the wall-attached
biofilm is made up of green cells, whereas the streamer is made up exclusively of red cells, which were transported to the clogging site by flow.

Movie S1

Movie S2. Biofilm streamer initiation. Several snapshots of this movie are shown in Fig. S3. This movie is displayed at 5× real time. Images were acquired using
bright-field microscopy, and a background image was subtracted to visualize newly appearing structures such as streamers. The background image is made
from the average of the 10 images taken 5 s before each image shown.

Movie S2
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