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Method for Binding Free Energy Calculation.Themolecular mechanic-
generalized Born surface area (MM-GBSA) approach combines
molecular mechanics, the generalized Bornmodel, and the solvent
accessibilitymethod to calculate the binding free energy of a ligand
binding toaproteinorothermacromolecule (receptor) on thebasis
of the 3D structure of the ligand–receptor complex. The pair-wise
generalized Born surface area (GBSA) model has been widely
applied and validated in several cases since it was proposed by Still
and coworkers (1, 2). However, application of this GBSAmodel in
drug design is limited due to its expensive computational cost
(3–5). Although the proposed grid-basedGBSAmodel shows great
improvement in computational speed (3, 4), its use is still confined
to receptor-rigid simulations. Similarly, a molecular mechanics
(MM) model has also been designed as a pair-wise–based and a
rigid-based method for energy calculation at high speed (6, 7).
To consider both the flexibility of the receptor and computing

speed, we developed an improved MM-GBSA method for pre-
dicting ligand–receptor binding free energy. Our method adopts
a hybrid MM-GBSA model of pair-wise and grid-based models,
which calculates ligand and surrounding flexible residues (core
part) by using pair-wise models and computes the other part of the
receptor using grid-based models for both MM and GBSA. Thus,
our hybrid model may take into account the flexibility of ligand–
receptor binding by simulating the core part with the pair-wise
model and speed up the computing time by calculating the re-
maining part with the rigid model.
As mentioned in the main text, the predicting results of the

traditionalMM-GBSAapproaches arenot stable enough; for some
cases the results are quite promising (RMS errors under 3 kcal/
mol), but for many systems the calculations with larger errors have
been seen. To enhance the prediction accuracy, we improved the
energy function of MM-GBSA by weighting the energy terms with
coefficients; thus the energy function can be rewritten as

ΔG0
binding =ω1ΔEvdw +ω2ΔEes +ω3ΔGgb +ω4ΔGsa; [S1]

where ΔEvdw and ΔEes are, respectively, the van der Waals in-
teraction energy and electrostatic interaction energy, and ΔGgb
and ΔGsa refer to the polarization and nonpolarization compo-
nents of salvation free energy, respectively. Weighting factors
ω1–ω4 can be obtained by fitting the experimental binding free
energies of a series of existing ligands to the receptor with the
multiple linear regressionmethod. It should be noted that we have
regrouped the components of the energy terms by integrating the
electrostatic portion of ΔGgb into ΔEes. Therefore, all four terms
of Eq. S1 are independent and will not mutually interfere during
docking simulation by using these terms as optimization objectives
(Molecular Docking for Binding Configurations Sampling section).
In addition, we considered the energy penalties from the confor-
mational changes for ligand and receptor. Thus, the four MM-
GBSA terms are given by
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where RL, R, and L represent ligand–receptor complex, receptor,
and ligand, respectively. ΔEvdw and ΔEes are calculated using the
Lennard–Jones 6–12 potential and the Coulombic potential, re-
spectively. ΔGgb is calculated using the generalized Born (GB)
model, and ΔGsais computed using the solvent accessibility (SA)
model. ΔðSAÞ and ΔðSAhpÞ are, respectively, the changes for total
and hydrophobic solvent accessible surfaces of receptor due to
ligand binding. ΔEconf

vdw;R (ΔEconf
es;R) and ΔEconf

vdw;L (ΔEconf
es;L ) are the

conformational energy penalties for hydrophobic (electrostatic)
interactions of receptor and ligand in the complex relative to their
reference conformations (e.g., the structure of apo-receptor and
lowest-energy conformation of ligand in solution), respectively.
Correspondingly, ΔGconf

pol;R, ΔðSAconf
hp Þ, and ΔðSAconfÞ are the en-

ergy penalties for solvation free energies from polarization and
solvent accessibility due to conformational change of receptor
induced by ligand binding. The scaled coefficient parameters in
Eq. S5 were selected as σ1 = 0:025 and σ2 = 0:015 according to a
previous study (3).

Preparation for Input Structures. The X-ray crystal structure of the
apo-TcAChE [Protein Data Bank (PDB) ID: 1EA5] was used as
the starting structure for sampling binding modes of (−)−Huperzine
A (HupA) to Torpedo californica acetylcholinesterase (TcAChE).
The HupA was protonated by using the Epik module encoded in
Maestro (8) and its atomic partial charge was assigned by means of
the Gasteiger–Marsili method (9). The structure of TcAChE was
prepared by using Sybyl 6.8 (10) and parameterized according to the
Amber ff99 force field (11). For docking simulations and binding
free energy calculations, the flexible residues surrounding the active
gorge of TcAChE were identified by comparing a series of X-ray
crystal structures of apo-TcAChE and inhibitor-TcAChE complexes
(PDB IDs: 1E66, 1EA5, 1EVE, 1GPK, 1GPN, 1GQR, 1H22, 1H23,
1HBJ, 1ODC, 1U65, 1UT6, 1VXO, 1VXR, 1W4L, 1W6R, 1W75,
1W76, 1ZGB, 1ZGC, 2BAG, 2C4H, 2C5F, 2C5G, 2CEK, 2CKM,
2DFP, 2J3D, 2J3Q, 2J4F, 2V96, 2V97, 2V98, 2VA9, 2VJA, 2VJB,
2VJC, 2VJD, 2VQ6, 2VT6, 2VT7, 2W6C, 2W9I, 2WFZ, 2WG0,
2WG1, 2WG2, 2XI4, 3GEL, 3I6M, 3I6Z, and 3M3D), and the grids
of the rigid part of the TcAChE structure were produced by using
the energetic grid module (6) and Zou GB/SA grid models (3) en-
coded in DOCK6.5 (12). Of note, the centers for grids generation
were consistent with the centers of the selected subboxes for binding
configuration sampling. That is, one set of grids (including the en-
ergetic grid and Zou GB/SA grids) was needed to be prepared for
each selected subbox. In this study, the energetic grid was defined
with a size of 35× 35× 35Å3 and the ZouGB/SA grids were defined
with a dimension of 19 × 19 × 19 Å3 due to the limitation in the
memory requirement for calculation. The degrees of protein flexi-
bility were defined on the basis of experimental observation. For
TcAChE studied in this work, conformational changes were ob-
served in the 13 residues located around the predicted tunnels, in-
cluding Y70, W84, Y121, S122, E199, W279, F288, F290, F330,
F331,Y334,W432, andH440. The flexibilities of these residues were
considered during the binding free energy landscape (BFEL) con-
struction.

Fittingω1–ω4 Values for TcAChE.The X-ray crystal structures of eight
inhibitor–TcAChE complexes with experimental data of quanti-
tative binding affinity were used for fitting the values of ω1–ω4.
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Theoretically, the more experimental data are available, the more
reliable result we can obtain. However, there are only eight ex-
perimental data sets that could be used in our study. The PDB
entries of these crystal structures, chemical structures of the in-
hibitors, and dissociation or inhabitation constants are listed in
Table S1. For each inhibitor–TcAChE complex, the four MM-
GBSA energy terms, ΔEvdw, ΔEes, ΔGgb, and ΔGsa, were cal-
culated using Eqs. S2–S5, respectively, and the results are also
listed in Table S1. These calculation data were used to fit the
experimental binding free energies using the multiple linear re-
gression method, and the optimized values of ω1–ω4 were ob-
tained with a relatively high confidence (R2 = 0.6926). The fitted
data of ω1–ω4 and the linear relationship between the experi-
mental and predicted binding free energies are shown in Fig. S2.
These fitted values of ω1–ω4 were used in constructing the
binding free energy landscape for HupA–TcAChE binding.

Molecular Docking for Binding Configurations Sampling. Docking is
anobviously appropriate approach to simulate the bindingmodels
for ligand–receptor interactions at a large-scale level because of
its rapid computing speed (13). Nevertheless, owing to the lack of
diversity in sampled binding poses and inaccuracy for binding
affinity prediction, the existing docking tools were not adequate
for the construction of the BFEL. Therefore, in the present
study, we used a unique docking method developed in our lab-
oratory to simulate and sample the binding configurations. There
are two key improvements of our docking method in comparison
with others: (i) we used Eq. S1 as a scoring function during the
docking simulation, and thus the binding affinity of each binding
configuration could be accurately estimated; (ii) with consider-
ation of the delicate balance among Van der Waals interaction,
electrostatic interaction, solvent effects, and conformational
changes in ligand–receptor binding, we designed a multiobjective
model to optimize the binding pose by taking the four energy
terms in Eq. S1 (ΔEvdw, ΔEes, ΔGgb, and ΔGsa) as objective
functions. The multiobjective optimization was performed by
using the nonsorting genetic algorithm II (NSGA2) (14). In this
way, our docking method may produce diverse binding poses and
calculate corresponding binding free energies simultaneously. Of
note, our docking method may address the highly fluctuant and
complicated energy landscape of ligand–receptor binding with
many energetically similar but structurally different local min-
ima, as has been shown in the BFEL construction for HupA–

TcAChE binding in the present study. The reason our docking
method can realize such a simulation is that our docking program
may fix the ligand into each lattice box and search possible
binding poses within each lattice box. The process is very simple;
i.e., the ligand was first dragged into the center of one lattice, and
the translational range of the mass of the center of the ligand was
restrained within the lattice and the rotational degree of the li-
gand was unlimited during docking simulation. In this way, the
binding conformations of the ligand could be optimized locally
within a very small grid during docking, and a relatively complete
configuration space for ligand–protein interaction could be ob-
tained. On the other hand, to avoid the loss of binding config-
urations at the boundaries between the neighboring lattices,
additional lattices of equal size are intersected in between them.
On the other hand, the ligand molecule is allowed to translate
and rotate freely in a lattice as long as its center of mass does not
move to its neighboring lattices. This setting will also prevent the
loss of binding configurations, especially the configurations lo-
cated at the transition states, caused by the global convergence of
the optimization method of docking.

BFEL Construction. The BFEL is constructed in a Euclidean co-
ordinate system: The y axis is the distance between themass centers
of HupA at an instantaneous configuration and that ofHupA at the
active site, the x axis is the minimized root mean SD (RMSD)

between the instantaneous conformation of HupA and that at the
active site of TcAChE, and the z axis is the calculated binding free
energy of each binding configuration. About 127,371 sets of pri-
mary data of binding configurations with binding free energy values
were obtained from the configuration sampling for HupA–
TcAChE binding and free energy calculations. The xy plane was
divided into 500 × 500 mesh grids, and the scatter data of binding
free energies were fitted to the grids by using the Gridfit algorithm
(15) encoded in Matlab (16). The nearest-neighbor algorithm (15)
was used to interpolate data points between the primarily calcu-
lated data points, and the BFEL surface was constructed on the
basis of 250,000 data points (primary plus interpolated data points)
by using the iterative least-squares solver method in Gridfit (15). A
smoothing process was performed to smooth the primary BFEL
surface with different degrees of smoothness to obtain a reasonably
accurate smooth surface.

Binding Pathway Analysis. Fig. S3A demonstrates the procedure of
the algorithm for pathway searching. The constructed 2D BFEL
was first coarse-grained into 100 × 100 grids and allowed a point to
perform grid-to-grid movement. The point might move forward,
left, and right but not backward. To simplify the process, we per-
formed the pathway searching starting from the active site, sup-
posing the ligand binding and unbinding within the same pathway.
From one grid the point moves toward only the next grid with the
lowest energy among the neighboring points. For example, at grid
S1, the point will move to grid S2 rather than to S2′ and S2′′ be-
cause the energies of the latter two grids are higher than that of S2.
In this way, the lowest-energy pathway may be addressed from the
active site (global minima) to the bulk solvent.

Surface Plasmon Resonance Determination. The thermodynamic
(KD) and kinetic parameters (kon and koff) of HupA–TcAChE
binding were determined by using surface plasmon resonance
(SPR) technology. SPR measurements were performed on a
BIAcore T200 instrument (BIAcore GE Healthcare). TcAChE
was diluted in the acetate solution (pH 4.0) with a final concen-
tration of 50 μg/mL, and the enzyme was immobilized to one of the
measurement cells of the sensor chip surface by the standard
Biacore procedure, using HBS-EP buffer [10 mMHepes, 150 mM
NaCl, 3 mM EDTA, and 0.005% (vol/vol) surfactant P20, pH 7.4]
at a flow rate of 10 μL/min. The enzyme was coupled covalently to
the carboxymethylated dextran of a CM5 sensor chip by amino
coupling. Carboxyl groups in the immobilization matrix were first
activated by treatment with a fresh mixture of 0.2 M 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide hydrochloride and 50 mM
N-hydroxysuccinimide for 7 min. The enzyme at the same con-
centration (50 μg/mL in 10 mM sodium acetate, pH 5.2) was then
injected over the surface until a desired immobilization level
[4,900 resonance units (RU)] was reached. Finally, unreacted
N-hydroxysuccinimide esters were blocked by 1 M ethanolamine,
pH 8.5, for 7 min. Binding affinity measurements were performed
in a continuous flow of 30 μL/min, using HBS-EP as the running
buffer. The HupA chemical was diluted in the running buffer and
automatically injected in a series of increasing concentrations (0,
62.5, 125, 250, 500, 1,000, and 2,000 nM). The binding responses
were recorded continuously in RU at a frequency of 1 Hz as
sensorgrams and presented as a function of time (illustrated in Fig.
S6A). Sensorgrams were processed by using automatic correction
for nonspecific bulk refractive index effects. Data processing and
analysis were performed using Biacore T200 evaluation software
in a 1:1 binding model (BIAcore GE Healthcare Bio-Sciences).

Binding Free Energy and Activation Free Energies Derived from SPR
Data. The association rate constant (kon) and dissociation rate
constant (koff) obtained from the SPR determinations were
used to obtain binding constant (KD) and corresponding binding
free energy,
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KD =
koff
kon

[S6]

ΔGbinding =RT lnKD: [S7]

In principle, activation free energies for the association (ΔG≠
on)

and dissociation (ΔG≠
off) processes could be obtained using

Eyring’s equation,

ΔG≠
on = −RT ln

�
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kBT

	
; ΔG≠

off = −RT ln
�
koffh
kBT

	
; [S8]

where h is the Planck constant and kB is the Boltzmann constant.
In practice, ΔG≠

on and ΔG≠
off are obtained in the following way:

(i) Determine kon and koff values at several different temper-
atures in a range; (ii) fit the kon and koff values to the linear

form of Eyring’s equation to obtain the activation enthalpy
(ΔH≠

o ) and entropy (ΔS≠o ),

ln
ko
T

= −
ΔH≠

o

RT
+ ln

kB
h
+
ΔS≠o
R

; [S9]

where “o” represents “on” or “off”; and (iii) calculate the acti-
vation free energy by

ΔG≠
o =ΔH≠

o −TΔS≠o : [S10]

For HupA–TcAChE binding, the kon and koff values at five
different temperatures in the 10–30 °C range were determined by
using SPR (Table S2). The fitted linear relationships of ln(kon/T)
and ln(koff/T) with 1/T are obvious; the R2 values are as high as
0.9991 and 0.9687, respectively (Fig. S6 B and C).
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Fig. S1. Work flow of construction of binding free energy landscape (BFEL) for the ligand–receptor binding process: (i) Analyze the binding pocket properties
and define the flexible residues for following docking simulations and MM-GBSA calculations. (ii) Divide the binding pocket of receptor into sub cubics (lattices).
(iii) Dock the ligand into each lattice and obtain the binding configurations located inside the lattice. During docking simulations, a multiobjective optimization
algorithm developed in our laboratory is used to obtain the binding poses of the ligand by taking the four energy terms in Eq. S1 as objective functions (SI Text).
(iv) Construct binding configuration space by taking together the docking data of all lattices. (v) Construct the BFEL on the basis of the information of the binding
configuration space, including ligand–receptor complex structures and binding free energies of the points in the binding configuration space. Search the possible
binding pathway of ligand to protein from the BFEL, and calculate binding free energy and activation free energies for the association and dissociation processes.
(vi) Map the structure snapshots of ligand–receptor binding to the binding pathway; obtain the structural information of possible stable states, metastable
states, and transition states for the ligand binding to the receptor; and propose possible mechanisms for ligand binding.
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Fig. S2. Linear relationship between the experimental and predicted binding free energies calculated using the improved MM-GBSA method for the eight
available inhibitors binding to TcAChE (Table S1).

Fig. S3. (A) Schematic representation of the grid-to-grid unbinding pathway searching algorithm. Starting from the grid of the active site, the ligand moves
toward the next grid with the lowest energy among the neighboring points. (B) Comparison of the docking-derived binding configurations of HupA to TcAChE
(at the B3 state) with the X-ray crystal structure of the HupA–TcAChE complex (PDB ID: 1VOT). Only the residues around the active site are shown. The carbon
atoms of HupA and residues of TcAChE in the X-ray structure are colored in cyan and the atoms in the docked structure are colored in green, respectively. HupA
is shown in a ball-and-stick model, and the residues are shown as sticks. The docked configuration of HupA agreed well with the crystal structure with an RMSD
of 0.588 Å, and the docked conformation of flexible residues of TcAChE agreed with the crystal structure with an RMSD of 0.775 Å.
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Fig. S4. Structural features of the alternative possible binding pathway of HupA entering into the gorge of TcAChE. (Lower Right) Binding pathway of HupA
to TcAChE corresponding to the binding free energy profile shown in Fig. 3. Green stick reflects the lowest binding free energy pathway portrayed by the
centers of mass of the instantaneous conformations of HupA. Balls indicate the (meta)stable states (red) and transition states (blue). Smaller panes (Upper and
Left) represent Interaction models for the metastable, stable, and transition states indicated in the binding pathway. Red dashed lines in structural models
indicate the hydrogen bonds.

Fig. S5. Two possible binding orientations for HupA entering the active gorge of TcAChE. Through path I (Left), HupA could reach the active site. HupA could
arrive only at the bottom of the peripheral anionic site and could not move farther to reach the active site via path II (Right).
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Fig. S6. (A) Surface plasmon resonance (SPR) sensorgrams of the binding of HupA to TcAChE. SPR determination for the binding of HupA with TcAChE is
shown. Real-time binding measurements of HupA to TcAChE at five different temperatures (283.15, 288.15, 293.15, 298.15, and 303.15 K) were performed by
using a BIAcore T200 instrument (BIAcore GE Healthcare). Representative sensorgrams were obtained from injections of HupA at concentrations of 62.5, 125,
250, 500, 1,000, and 2,000 nM (curves from top to bottom) at each temperature. HupA was injected for 180 s for association, and dissociation was monitored
for more than 360 s. (B and C) Eyring plots of the association (B) and dissociation (C) rate constants for HupA–TcAChE binding. The rate constants were from
the SPR determinations at five different temperatures (A and Table S2).
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Table S1. Chemical structures and experimental binding affinities of AChE inhibitors used for fitting the values of ω1–ω4 in Eq. 1 and
the MM-GBSA calculation results of these inhibitors binding to TcAChE

PDB ID codes Inhibitors KD, nM* Gbinding-exp, kJ/mol† Evdw, kJ/mol Ees, kJ/mol Ggb, kJ/mol Gsa, kJ/mol Gbinding-cal, kJ/mol

1E66 0.13 (1) 50.88 190.78 423.43 505.02 17.18 52.50

1GPK 175 (2) 31.76 149.42 123.80 216.83 9.46 34.67

1GPN 334 (1) 37.91 164.17 165.05 247.86 16.17 41.28

1GQR 700 (1) 37.21 57.42 37.07 20.40 27.60 34.71

1H22 0.8 (3) 50.91 254.35 102.36 180.79 18.89 45.66

1H23 4.5 (3) 54.42 270.33 158.12 266.23 19.92 53.84

1U65 26.4 (3) 48.32 190.37 479.24 528.88 12.41 45.43

2CKM 0.077 (4) 46.53 266.59 217.06 320.74 14.29 50.09
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*Experimental dissociation constants from refs. 1–4 (reference numbers in parentheses).
†Binding free energies calculated from the binding constants by relation of ΔGbinding−exp =RT lnKD.

Table S2. SPR data for HupA–TcAChE binding at five different temperatures

T, K kon, M
−1·s−1 koff, s

−1 KD, M
−1 χ2, RU2

283.15 3.38 × 103 1.80 × 10−3 5.32 × 107 6.00 × 10−3

288.15 6.98 × 103 2.30 × 10−3 3.29 × 107 9.00 × 10−3

293.15 1.36 × 104 3.52 × 10−3 2.58 × 107 1.43 × 10−2

298.15 2.65 × 104 5.67 × 10−3 2.14 × 107 1.10 × 10−2

303.15 4.53 × 104 8.01 × 10−3 1.77 × 107 4.20 × 10−2
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