

Figure S1. Set1 complex subunits are necessary for resistance to Brefeldin A. Growth curve analysis over 8 hours of strains containing deletion cassettes at the Set1 complex subunit loci. Strains were either treated with100 µg/ml Brefeldin A dissolved in ethanol or in an equal volume of ethanol.

Figure S2. Brefeldin A does not affect H3K4 methylation. A. Western blot analysis of WT and *set1* Δ strains in the presence of Brefeldin A. H3K4 methylation was determined using antibodies specific to mono-, di-, and trimethylation of H3K4. H3 antibody was used as a loading control. C. Schematic of the ergosterol and cholesterol biosynthetic pathway with indicated names of conserved and yeast specific genes tested for gene expression analysis. Single asterisks indicate genes conserved between the ergosterol and cholesterol pathways. Double asterisks indicate ergosterol specific genes. B. Expression of *SEC7* and *GEA1* was determined in the *set1* Δ strain by qRT-PCR analysis. All expression analysis was relative to wild-type (WT) strain using Actin (*ACT1*) as an internal control to normalize expression levels. Data were analyzed from a minimum of three biological repeats with three technical repeats each.

Figure S3. H3K4 methylation and Set1 methyltransferase activity are necessary for proper gene expression. A-F. Relative transcript levels of *DAN1, ERG11, ERG4, AUS1, SUT1* and *HMG1* were determined in the indicated strains by qRT-PCR analysis. All expression analysis was relative to wild-type (WT) strain using Actin (*ACT1*) as an internal control to normalize expression levels. Data were analyzed from three biological repeats with three technical repeats. Each error bar represents the standard error of the mean. Statistical significance of gene expression analysis is indicated in Tables S6-S11.

Figure S4. Set1 mediated repression of DAN1 is not through reduced expression of DAN1 repressors. A. Relative transcript levels of DAN1. ERG11, ERG4, and HMG1 were determined in the indicated strains by gRT-PCR analysis. All expression analysis was relative to a wild-type (WT) strain using Actin (ACT1) as an internal control to normalize expression levels. Data were analyzed from three biological repeats with three technical repeats. Each error bar represents the standard error of the mean. Statistical significance of gene expression analysis is indicated in Tables S6-S11. B-C. ChIP analysis from the indicated strains were performed using antibodies specific to a 3XMYC-tag for detection of Set1, histone H3K4 di- and trimethylation, and histone H3. ChIP analysis for H3K4 di- and trimethylation was normalized to input and histone H3 and relative to a ChIP from an untranscribed region of chromosome 6. ChIP analysis for 3XMYC-Set1 was normalized to input and relative to WT untagged strain and relative to a ChIP from an untranscribed region of chromosome 6. All ChIP analysis was performed using three biological repeats with three technical replicates; error bars represent the standard error of the mean. D. Relative transcript levels of ROX1 and MOT3 were determined in the indicated strains by gRT-PCR analysis. E. Gene expression analysis using probes specific to the promoter. 5' and 3' regions of *DAN1* in WT and set1 Δ strains. All expression analysis was relative to WT strain using Actin (ACT1) as an internal control to normalize expression levels. Data were analyzed from a minimum of three biological repeats with three technical repeats each.

Figure S5. Set1 dependent growth in the presence of BFA is not dependent on ergosterol uptake genes in the absence of exogenous ergosterol. A-B, Growth curve analysis over 8 hours of the indicated strains. Strains were either treated with 100 μ g/ml Brefeldin A dissolved in ethanol or in an equal volume of ethanol in the absence of exogenous ergosterol. Data were combined from three biological repeats. Error bars are calculated standard error of the mean.

Table S1. Strains

Yeast strain	Genotype	Reference
BY4741	MATα his3Δ leu2Δ0 LYS2 met15Δ0 ura3Δ0	Open Biosystems
bre2∆	BY4741: MATα his3Δ leu2 Δ 0 LYS2 met15 Δ 0 ura3 Δ 0 bre2 Δ ··KanMX	Open Biosystems
sdc1∆	BY4741: MATα his3 Δ leu2 Δ 0 LYS2 met15 Δ 0 ura3 Δ 0 sdc1 Δ ::KanMX	Open Biosystems
spp1∆	BY4741: MATα his3 Δ leu2 Δ 0 LYS2 met15 Δ 0 ura3 Δ 0 spn1 Δ ::KanMX	Open Biosystems
swd1∆	BY4741: MATα his3 Δ leu2 Δ 0 LYS2 met15 Δ 0 ura3 Δ 0 swd1 Δ : KanMX	Open Biosystems
swd3∆	BY4741: MATα his3 Δ leu2 Δ 0 LYS2 met15 Δ 0 ura3 Δ 0 swd3 Δ ::KanMX	Open Biosystems
shg1∆	BY4741: MATα his3 Δ leu2 Δ 0 LYS2 met15 Δ 0 ura3 Δ 0 sha1 Δ ::KanMX	Open Biosystems
erg4∆	BY4741: MAT α his3 Δ leu2 Δ 0 LYS2 met15 Δ 0 ura3 Δ 0 erg4 Δ ::KanMX	Open Biosystems
bre1∆	BY4741: MAT α his3 Δ leu2 Δ 0 LYS2 met15 Δ 0 ura3 Δ 0 hre1 Δ :KanMX	Open Biosystems
set2∆	BY4741: MATα his3 Δ leu2 Δ 0 LYS2 met15 Δ 0 ura3 Δ 0 set2 Δ ::KanMX	Open Biosystems
dot1∆	BY4741: MATα his3 Δ leu2 Δ 0 LYS2 met15 Δ 0 ura3 Δ 0 det1 Δ : KanMX	Open Biosystems
dan1∆	BY4741: MATα his3 Δ leu2 Δ 0 LYS2 met15 Δ 0 ura3 Δ 0	Open Biosystems
pdr11∆	BY4741: MATα his3Δ leu2Δ0 LYS2 met15Δ0 ura3Δ0 rd11Δ.:KanMX	Open Biosystems
set3∆	BY4741: MATα his3 Δ leu2 Δ 0 LYS2 met15 Δ 0 ura3 Δ 0	Open Biosystems
SDBY1210	BY4741: MATα his3 Δ leu2 Δ 0 LYS2 met15 Δ 0 ura3 Δ 0 set1 Δ : HvgMX	This study
SDBY1215	BY4741: MATα his3 Δ leu2 Δ 0 LYS2 met15 Δ 0 ura3 Δ 0 dan1 Δ : KanMX set1 Δ : HyaMX	This study
SDBY1216	BY4741: MATα his3 Δ leu2 Δ 0 LYS2 met15 Δ 0 ura3 Δ 0 pdr11 Δ ::KapMX sot1 Δ ::HvgMX	This study
SDBY1217	$MAT\alpha$ his3 Δ leu2 Δ 0 LYS2 met15 Δ 0 ura3 Δ 0 HMG1 3xEL AG::KanMX	This study
SDBY1218	$MAT\alpha$ his 3Δ leu $2\Delta0$ LYS2 met $15\Delta0$ ura $3\Delta0$ HMG1 $3xELAG::KanMX$ set $1\Delta::HygMX$	This study
SDBY1001	MATa, ura3-52, lys2-801, ade2-101, trp1Δ63, his3Δ200, leu2Δ1, hht1-hhf1::pWZ405-F2F9- LEU2,hht2-hhf2::pWZ403-F4F10-HIS3::pJH18	(1)
SDBY1004	MATa, ura3-52, lys2-801, ade2-101, trp1Δ63, his3Δ200, leu2Δ1, hht1-hhf1::pWZ405-F2F9- LEU2,hht2-hhf2::pWZ403-F4F10-HIS3::pHCL54	(1)
SDBY1005	MATa, ura3-52, lys2-801, ade2-101, trp1Δ63, his3Δ200, leu2Δ1, hht1-hhf1::pWZ405-F2F9- LEU2,hht2-hhf2::pWZ403-F4F10-HIS3::pHCL55	(1)

SDBY1006	<i>MAT</i> a , <i>ura</i> 3–52, <i>ly</i> s2–801, <i>ad</i> e2–101, <i>trp</i> 1Δ63, <i>his</i> 3Δ200, <i>leu</i> 2Δ1, <i>hht</i> 1- <i>hhf</i> 1::pWZ405-F2F9- LEU2, <i>hht</i> 2- <i>hhf</i> 2::pWZ403-F4F10-HIS3::pHCL56	(1)
SDBY1211	as SDBY1210 with pRS415	This study
SDBY1212	as SDBY1210 with pDPM32	This study
SDBY1213	as SDBY1210 with pPFS56	This study
SDBY1214	as BY4741 with pRS415	This study
FY406	MATa (<i>hta1-htb1</i>)Δ::LEU2 (<i>hta2-htb2</i>)Δ::TRP1 leu2Δ1 ura3-52 lys2Δ1 lys2Δ128 his3Δ200 trp1Δ63 <psab6></psab6>	(2)
YKG002	MATa (<i>hta1-htb1</i>)Δ::LEU2 (<i>hta2-htb2</i>)Δ::TRP1 leu2Δ1 ura3-52 lys2Δ1 lys2Δ128 his3Δ200 trp1Δ63 <pzs146 (K123R)></pzs146 	(2)

Table S2. Plasmids

Plasmid	Inserted Gene	Promote	r Vector	Source
pRS415	None		pRS415	
pDPM32	3xMYC-SET1	SET1	pRS415	This Study
pPFS56	3xMYC-set1 H1017K	SET1	pRS415	This Study

_

Table S3. Primers for qRT-PCR

Primer name Sequence			
ACT1-001F	TGGATTCCGGTGATGGTGTT		
<i>ACT1-</i> 002R	TCAAAATGGCGTGAGGTAGAGA		
<i>HMG1-</i> 001F	CACCATATTCGGCCTCTTCAA		
<i>HMG1-</i> 002R	GGCGCTCAACCAAAAATTTG		
<i>ERG4-</i> 001F	CAACTCGGTGTTCCCATGGT		
<i>ERG4-</i> 002R	AAGGCTCTGTGAATCAGGACAAC		
<i>ERG6-</i> 001F	AAGAACAACTCTGCCCAAAAGG		
<i>ERG6-</i> 002R	CGGTTCTACCATCCCAATTTCTC		
ERG11-001F	CACGAATTTGTCTTCAACGCTAA		
ERG11-002R	AGTCAAATGAGCGTAAGCAGCTT		
HMG2-001F	ACATGAGGAAAATCGGATCAAAG		
HMG2-002R	GCGCATGCAGAGTTTGAA		
DAN1-001F	GGCGATTTCACCACCATGTT		
DAN1-002R	CCGGTGATCATTCTGGTCACT		
AUS1-001F	TGAGGACAGCATGCCGAAT		
AUS1-002R	GCCTCTGCTTGGAAGGTTATGT		
PDR11-001F	CGGTGGAGCAAACCATTGAT		
PDR11-002R	ACGCTCTTGCTTGGGAATGT		
SUT1-001F	GCACGCTGTTGCGGAATAT		
SUT1-002R	GCGTGAGCCTGTACCCTCAA		
SEC7-001F	GGCTATCAGAACAATCTACAACGTTT		

SEC7-002R	AGGTCGCCTGTGCAATACCT
GEA1-001F	CAGTCGAGGATGGGTGTGAAG
GEA1-002R	TGGAACGACTAGAAAGATCAATAATAGAA
ROX1-001F	CGACCCTTCAACGAGACATCA
ROX1-002R	TCGAGTTAGCCCTTGGTTGAG
MOT3-001F	TGGCGTCACAGCCTTTCAA
MOT3-002R	TTCACCATAACGTCGTCCTTGT

Table S4. Probe sets for ChIP analysis

Primer name	Sequence 5'-3'
HMG1 promoter	/56-FAM/AGTGCGAAG/ZEN/AAAACGTAGTGCGAGT/3IABkFQ/
	GAAGAGTTGGAAGACCTCAGC
	AGATCCTATAGCTAGTACGGAC
HMG1 5'	/56-FAM/TGAATGACG/ZEN/GATAGATAAGCGAATGCGG/3IABkFQ/
	CGGCGAAACGACCAATTC
	GTGTTGGAGTCTTTATTTGGAGC
HMG1 3'	/56-FAM/AGGTTTTGT/ZEN/TGGTTCAGCAGGTTTCC/3IABkFQ/
	CGGCCATTTGGTTCAAAGTC
	ACGATTTATATCAGTGGCGTCC
DAN1 promoter	/56-FAM/AGATCTTGG/ZEN/CATTTTCAAAGGCACGC/3IABkFQ/
	GTTTCATGTTTCCTGCGCG
	GGACCCTTTTGCATTTCTAGC
DAN1 5'	/56-FAM/AAATCGCCA/ZEN/CCGGCAAAAACAGC/3IABkFQ/
	CACCTGAAATACCAGTCAACATG
	AAGACTGAACATACCCACCTG
DAN1 3'	/56-FAM/AGCCAGTCT/ZEN/CCTCCAAAGCTCAATC/3IABkFQ/
	AGACTCCAAGCTTCCACTGTTG
	TGACGATGTGACAGAAGTAGC
ERG6 promoter	/56-FAM/ACCTCCAAT/ZEN/ACTTGCTGTTGCCGA/3IABkFQ/
	TGCTCCACTTCGTCTCAATG
	GGATAGGAGAAAACACCCGAAC
ERG6 5'	/56-FAM/TCTGAACGG/ZEN/CTTCCTTTTGGGCA/3IABkFQ/
	GGTTTGAGTGCATTGATGTCG
	TCGGCATCTTTATCGGTTCTAC
ERG6 3'	/56-FAM/AGGAAGCCA/ZEN/GAAAACGCCGAAAC/3IABkFQ/
	TCGGCATCTTTATCGGTTCTAC
	TTCTTGGGAAGTTTGGGAGG
ERG11 promoter	/56-FAM/TCGTTAACT/ZEN/CGTGGAGATGCACAATAGG/3IABkFQ/
	GCAGGAGACATCGATTTTATGC
	GAGGCTTTTCGAATACATGCG
ERG11 5'	/56-FAM/TGGGCCAAT/ZEN/GGTAAAGCCAAGAAATG/3IABkFQ/

	TTGGAGAGGCATTGGAATACG
	TCCTTTCTCAAAGAATATAGTAATTGCC
ERG11 3'	/56-FAM/ACCGTTCCA/ZEN/CCTCCTGACTTTACATCT/3IABkFQ/
	AAATGGCATTACCCAGAGGG
	TTTGTTCTGGATTTCTCTTTTCCC
Untranscribed	/56-FAM/TGCCATGTA/ZEN/TGCAACTGCTCTACCA/3IABkFQ/
region of	ACACCCGTCTTTGATGCTAG
chromosome 6	ATGTTCTCACGCTCTGTTCTAG

Table S5. Doubling time over 8 hours at

<u>30° C</u>		
Strain	-BFA	+BFA
BY4741 WT	1.93	1.93
bre2∆	2.12	3.24
bre1∆	2.00	4.55
erg6∆	1.86	5.83
set1∆	2.07	3.54
spp1∆	1.91	2.22
swd1∆	1.94	2.67
swd3∆	1.93	2.91
shg1∆	2.00	2.02
erg4∆	1.94	5.56
sdc1∆	2.02	3.08
set2∆	2.16	2.25
dot1∆	1.99	2.03
dan1∆	2.45	2.93
pdr11∆	2.56	3.61
set3∆	3.03	5.16
set1∆dan1∆	2.50	3.93
set1∆pdr11∆	2.39	4.23
WT + ergosterol	1.91	1.83
set1∆ + ergosterol	1.82	1.74
<i>dan1∆</i> + ergosterol	2.66	2.92
<i>pdr11</i> ∆ + ergosterol	2.72	3.78
set1∆dan1∆ + ergosterol	2.80	3.50
$set1\Delta pdr11\Delta$ + ergosterol	2.51	5.41
WZY42 WT	2.49	2.63
K4R	2.74	4.88
K36R	2.43	2.51
K79R	2.46	2.60
FY406 WT	2.20	2.28
YKG002 K123R	2.32	3.16

Gene name	RQ	Fold change relative to WT	P<.001
HMG1	0.46	-2.17 +/- 0.06	P<.001
HMG2	0.33	-3.03 +/- 0.06	P<.001
ERG6	0.84	-1.19 +/- 0.12	0.042
ERG11	0.43	-2.32 +/- 0.05	P<.001
ERG5	0.42	-2.38 +/- 0.03	P<.001
ERG4	0.39	-2.56 +/- 0.07	P<.001
DAN1	5.59	5.59 +/- 0.81	P<.001
AUS1	1.58	1.58 +/- 0.16	0.003
PDR11	2.45	2.45 +/- 0.34	P<.001
SUT1	0.78	-1.28 +/- 0.11	0.036
SEC7	0.79	-1.26 +/- 0.13	.059
GEA1	0.90	-1.11 +/- 0.16	.282
ROX1	0.81	-1.23 +/- 0.04	.002
МОТ3	0.83	-1.20 +/- 0.09	.077

Table S6. qRT-PCR analysis of *set1*∆ strain relative to WT

Strain	Gene name	RQ	Fold change relative to WT	P<.001
WT +pRS415	HMG1	1	0	
<i>set1∆</i> +pRS415	HMG1	0.55	-1.81 +/- 0.08	P<.001
<i>set1∆</i> +Set1	HMG1	0.88	-1.13 +/- 0.18	0.804
<i>set1∆</i> +Set1 H1017K	HMG1	0.55	-1.81 +/- 0.13	P<.01
WT +pRS415	ERG11	1	0	
<i>set1∆</i> +pRS415	ERG11	0.54	-1.85 +/- 0.04	P<.001
<i>set1∆</i> +Set1	ERG11	1.02	1.02 +/- 0.07	0.373
<i>set1∆</i> + <i>Set1</i> H1017K	ERG11	0.53	-1.89 +/- 0.06	P<.001
WT +pRS415	ERG4	1	0	
<i>set1∆</i> +pRS415	ERG4	0.54	-1.85 +/- 0.08	P<.001
<i>set1∆</i> +Set1	ERG4	1.04	1.04 +/- 0.18	0.707
<i>set1∆</i> +Set1 H1017K	ERG4	0.66	-1.51 +/- 0.13	P<.001
WT +pRS415	DAN1	1	0	
<i>set1∆</i> +pRS415	DAN1	4.44	4.44 +/- 0.89	P<.001
<i>set1∆</i> +Set1	DAN1	1.17	1.17 +/- 0.05	0.019
<i>set1∆</i> +Set1 H1017K	DAN1	5.33	5.33 +/- 1.01	P<.001
WT +pRS415	PDR11	1	0	
<i>set1∆</i> +pRS415	PDR11	2.14	2.14 +/- 0.24	P<.001
<i>set1∆</i> +Set1	PDR11	0.95	-1.05 +/- 0.11	0.678
<i>set1∆</i> +Set1 H1017K	PDR11	3.05	3.05 +/- 0.60	P<.001

Table S7. qRT-PCR analysis of Wt, *set1Δ*, *set1Δ* +Set1, *set1Δ*+ Set1 H1017K

Table S8. qRT-PCF	analysis of	f <i>set3∆</i> strain	relative to W	T
-------------------	-------------	-----------------------	---------------	---

_		
RQ	Fold change relative to WT	P<.001
0.48	-2.08 +/- 0.16	P<.001
0.41	-2.43 +/- 0.08	P<.001
1.34	1.34 +/- 0.46	0.52
	RQ 0.48 0.41 1.34	RQ Fold change relative to WT 0.48 -2.08 +/- 0.16 0.41 -2.43 +/- 0.08 1.34 1.34 +/- 0.46

Gene name	RQ	Fold change relative to WT	P<.001	
HMG1	0.35	-2.86 +/- 0.10	P<.001	
ERG11	0.26	-3.85 +/- 0.07	P<.001	
DAN1	4.03	4.03 +/- 1.25	P<.001	

Table S9. qRT-PCR analysis of *bre1*∆ strain relative to WT

Table S1.0 qRT-PCR analysis of $dan1\Delta$ and $set1\Delta dan1\Delta$ strain relative to WT

strain	Gene name	RQ	Fold change relative to WT	P<.001
dan1∆	HMG1	0.73	-1.36 +/- 0.02	P<.001
	ERG11	1.06	-1.06 +/- 0.25	0.67
	ERG4	1.33	1.33+/- 0.13	0.03
	HMG1	0.37	-2.70 +/- 0.02	P<.001
set1∆dan1∆	ERG11	0.52	-1.92 +/- 0.25	P<.001
	ER G4	0.38	-2.63 +/- 0.13	P<.001

Table S11.

qRT-PCR analysis of K4R and K123R strains relative to their respective wit strain					
Strain	Gene	RQ	Fold change	P<.001	
	name		relative to WT		
	HMG1	0.52	-1.91 +/- 0.06	P<.001	
K4R	ERG11	0.64	-1.56 +/- 0.06	P<.001	
	DAN1	2.19	2.19+/- 0.10	P<.001	
	HMG1	0.40	-2.5 +/- 0.09	P<.001	
K123R	ERG11	0.68	-1.47 +/- 0.05	P<.001	
	DAN1	2.51	2.51 +/- 0.11	P<.001	

Supporting References

- Fingerman IM, Li HC, & Briggs SD (2007) A charge-based interaction between histone H4 and Dot1 is required for H3K79 methylation and telomere silencing: identification of a new trans-histone pathway. *Genes & development* 21(16):2018-2029.
- 2. Gardner KE, Zhou L, Parra MA, Chen X, & Strahl BD (2011) Identification of lysine 37 of histone H2B as a novel site of methylation. *PLoS.One.* 6(1):e16244.