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SI Materials and Methods
All oligoribonucleotides were chemically synthesized follow-
ing the descriptions in refs. 1–4 with slight modifications as
outlined below.
Solid-phase synthesis of oligoribonucleotides.All oligonucleotides were
synthesized on Applied Biosystems instruments (ABI 392) fol-
lowing DNA/RNA standard synthesis cycles.
Detritylation (1.8 min) used dichloroacetic acid/1,2-

dichloroethane (4/96); coupling (2.0 min) was as follows:
phosphoramidites/acetonitrile (0.1 M × 120 μL) were acti-
vated by benzylthiotetrazole/acetonitrile (0.3 M × 360 μL);
capping (0.25 min) used solutions A and B: A—acetic anhy-
dride/sym-collidine/acetonitrile (20/30/50); B—4-(dimethyla-
mino)pyridine/acetonitrile (0.5 M), A/B = 1/1; oxidation (0.33
min) used I2 (20 mM) in tetrahydrofuran/pyridine/H2O (7/2/
1). For 5-aminoallyl-uridine (5aaU) and 2′-O-aminopropyl-
cytidine (2′propylC) sequences, the following mild capping sol-
utions were used: A—0.2 M phenoxyacetic anhydride in THF;
B—0.2 M N-methylimidazole and 0.2 M sym-collidine in THF.
Acetonitrile, solutions of amidites, and tetrazole were dried over
activated molecular sieves overnight.
2′-O-[(Triisopropylsilyl)oxy]methyl(2′-O-TOM)-protected ribo-

nucleoside phosphoramidites (5) and 2′-O-methyl ribonucleoside
phosphoramidites were obtained from Glen Research or Chem-
Genes. 2′-O-aminopropyl-cytidine phosphoramidite was pur-
chased from ChemGenes, 2′-O-propargyl-adenosine (2′propA)
phosphoramidite from Jena Bioscience, 5′-biotin phosphor-
amidite, and protected biotin serinol phosphoramidite were
purchased from Glen Research. 5-Aminoallyl-uridine (5aaU)
phosphoramidite was purchased from Berry & Associates. All
solid supports for RNA synthesis were purchased from GE
Healthcare (Custom Primer Supports: riboA 80, dA 80).
Deprotection of oligonucleotides. RNA oligonucleotides were depro-
tected by using CH3NH2 in ethanol (8 M, 0.65 mL) and CH3NH2
in H2O [40% (wt/vol), 0.65 mL] for 4–6 h at 35 °C. After complete
evaporation of the solution, the 2′-O-TOM protecting groups
were removed by treatment with tetrabutylammonium fluoride
trihydrate (TBAF·3H2O) in THF (1 M, 1.0–1.5 mL) for at least
14 h at 37 °C. The reaction was quenched by addition of triethy-
lammonium acetate (1 M, pH 7.0, 1.0–1.5 mL). The volume of the
solution was reduced to 0.8 mL, and the solution was loaded on
a GE Healthcare HiPrep 26/10 desalting column (2.6 × 10 cm;
Sephadex G25). The crude RNA was eluted with H2O, evapo-
rated to dryness, and dissolved in 1.0 mL of nanopure water.
2′-O-methyl RNA oligonucleotides were deprotected by using

CH3NH2 in H2O [40% (wt/vol), 0.65 mL] and ammonia in H2O
[30–33% (wt/vol), 0.65 mL] for 10 min at room temperature and
for 15 min at 65 °C. The solution was evaporated to dryness, and
the crude 2′-O-methyl RNA was dissolved in 1.0 mL of nanopure
water.
Analysis, purification, and mass spectrometry of oligoribonucleotides.
Analysis of crude oligonucleotides after deprotection was per-
formed by anion-exchange chromatography on a Dionex DNA-
Pac100 column (4 × 250 mm) at 80 °C (60 °C for 5-aminoallyl-
uridine and 2′-O-aminopropyl-cytidine RNA variants). Flow rate
was 1 mL/min; eluant A was composed of 25 mM Tris·HCl,
pH 8.0, and 6 M urea; eluant B was composed of 25 mM
Tris·HCl, pH 8.0, 0.5 M NaClO4, and 6 M urea; gradient was
0–60% B in A within 45 min; UV detection was at 260 nm.
Crude RNA products [4,4′-Dimethoxytrityl (DMT) off] were

purified on a semipreparative Dionex DNAPac100 column (9 ×
250 mm) at 80 °C (60 °C for 5-aminoallyl-uridine and 2′-O-

aminopropyl-cytidine sequences). Flow rate was 2 mL/min, and
gradient was Δ12–22% B in A within 20 min. Fractions con-
taining oligonucleotide were loaded on a C18 SepPak cartridge
(Waters/Millipore), washed with 0.1 M triethylammonium bi-
carbonate and H2O, eluted with H2O/CH3CN 1/1, and lyophi-
lized to dryness.
The purified oligonucleotides were characterized by mass

spectrometry on a Finnigan LCQ Advantage MAX ion trap in-
strumentation connected to an Amersham Ettan micro liquid
chromatography (LC) system (negative-ion mode with a potential
of −4 kV applied to the spray needle). LC included 200 pmol of
oligonucleotide dissolved in 30 μL of 20 mM EDTA solution
(average injection volume: 30 μL); column (XterraMS, C18
2.5 μm; 1.0 × 50 mm) at 21 °C; flow rate was 100 μL/min. Eluant A
consisted of 8.6 mM triethylamine and 100 mM 1,1,1,3,3,3-hexa-
fluoro-2-propanol in H2O (pH 8.0); eluant B consisted of metha-
nol. Gradient was 0–100%B inAwithin 30min, andUVdetection
was at 254 nm.
Preparation of Cy3-Cy5–labeled RNA.Materials used included (Sulfo-)
Cy3and (Sulfo-)Cy5NHSEster purchased fromGEHealthcareor
Lumiprobe. DMSO was dried over activated molecular sieves.
Labeling was performed as described in ref. 5 with slight mod-
ifications as described: Dye-NHS ester (1 mg; ∼1,200 nmol) was
dissolved in anhydrous DMSO (500 μL). Lyophilized RNA (20
nmol) containing 5-aminoallyl-uridine or 2′-O-aminopropyl-
cytidine modification was dissolved in labeling buffer (25 mM
phosphate buffer, pH 8.0), and nanopure water was added to
reach a fraction of 55% (vol/vol) (49 μL) of the intended final
reaction volume (89 μL) with a final concentration of cRNA of
225 μM. The corresponding volume of the dye-NHS ester so-
lution [45% (vol/vol)] (40 μL) was added to the RNA solution
(to reach a concentration of cDye = 1,124 μM in the final re-
action volume). The reaction mixture was gently tumbled on
a shaker for 5 h at room temperature in the dark.
Product purification was achieved by precipitation with 2.5

equivalentsof reactionvolumescontainingabsoluteethanoland1/5
equivalents of reaction volumes containing 1M sodium acetate for
30min at−20 °C and centrifuged for 30min at 4 °C at 13,000× g to
remove the excess of unreacted and hydrolyzed dye. The pellets
were dried under air and high vacuum. The dried pellets were
resuspended in water and purified by anion-exchange chroma-
tography on a Dionex DNAPac100 column (9 × 250 mm) at 60 °C.
Flow rate was 2 mL/min, and gradient wasΔ12–22% B in A within
20 min; UV detection was at a wavelength λ of 260 nm (RNA),
548 nm (Cy3), and 646 nm (Cy5). Fractions containing labeled
oligonucleotide were loaded on a C18 SepPak cartridge (Waters/
Millipore), washed with 0.1M triethylammonium bicarbonate and
H2O, eluted with H2O/CH3CN 1/1, and lyophilized to dryness.
Click labeling was performed with the following materials:

Sulfo-Cy3 azide (1 mg; ∼1,800 nmol), purchased from Lumiprobe,
was dissolved in H2O (180 μL). Lyophilized RNA (20 nmol)
containing 2′-O-propargyl-adenosine modification was dissolved
in 3 μL acetonitrile (20% of the intended final reaction volume),
100 nmol azide dye (10 μL), 300 nmol sodium ascorbate, and 300
nmol copper sulfate to give a final reaction volume of 15 μL. The
reaction mixture was gently tumbled on a shaker for 2 h at room
temperature under argon atmosphere. The reaction mixture was
directly purified by anion-exchange chromatography on a Dionex
DNAPac100 column (9 × 250 mm) at 80 °C.
Enzymatic ligation. Enzymatic ligations were performed as de-
scribed in refs. 6 and 7. The use of T4 DNA ligase requires a
double-stranded ternary substrate formed by a 5′-phosphorylated
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RNA donor, a single-stranded RNA acceptor with a free 3′-OH
group, and a splint oligonucleotide. The following fragments
were used (for the corresponding modifications and their posi-
tions, see main text): 45-nt RNA acceptor strand for the 81-nt
RNA sequences (WT/14–87, WT/24–68, WT/29–62, A69G/24–
68): 5′-ACG ACU CGG GGU GCC CUU CUG CGU GAA
GGC UGA GAA AUA CCC GUA-3′; 36-nt RNA donor strand
for the 81-nt RNA sequences (WT/14–87, WT/24–68, WT/29–62,
A69G/24–68): 5′-p UCA CCU GAU CUG GAU AAU GCC
AGC GUA GGG AAG UCA-3′; 45-nt RNA acceptor strand for
the 82-nt RNA sequence (WTP1stab/24–68): 5′-CGG ACU CGG
GGU GCC CUU CUG CGU GAA GGC UGA GAA AUA
CCC GUA-3′; 37-nt RNA donor strand for the 82-nt RNA se-
quence (WTP1stab/24–68): 5′-p UCA CCU GAU CUG GAU
AAU GCC AGC GUA GGG AAG UCC G-3′; Splint 18-nt
2′-O-methyl-RNA: 5′-UCA GGU GAU ACG GGU AUdA-3′.
The 45-nt RNA acceptor strand for WT/41–55 containing the

2′-O-propargyl-adenosine-41 for click chemistry was ligated from
two fragments: 16-nt RNA acceptor strand: 5′-ACG ACU CGG
GGU GCC C-3′; 29-nt RNA donor strand: 5′-p UUC UGC

GUGAAG GCUG(2′propA41)G AAA UAC CCG UA-3′; Splint
30-nt DNA: 5′-AGC CTT CAC GCA GAA GGG CAC CCC
GAG TCG-3′; 36-nt RNA donor strand for WT/41–55: 5′-p U
(5aaU55)A CCU GAU CUG GAU AAU GCC AGC GUA
GGG AAG UCA-3′.
Ligation reactions were first performed on an analytical scale

(0.4 nmol) before proceeding to a preparative scale (5–12 nmol).
T4 DNA ligase was purchased from Fermentas (5 U/μL). Opti-
mal ligation conditions were the following: 10 μM for each RNA
fragment, final ligase concentration of 0.5 U/μL in a final volume
of 0.5–1.2 mL; 3 h at 35 °C for 81- and 82-nt RNA sequence
(WT/14–87, WT/24–68, WT/29–62, A69G/24–68, WT/41–55,
WTP1stab/24–68); 5 h at 37 °C for 45-nt RNA sequence (WT/41–
55). Analysis of the ligation reaction and purification of the li-
gation products were performed by anion-exchange chromatog-
raphy. Liquid chromatography electrospray ionization mass
spectrometry (LC ESI MS) was used for characterization of the
HPLC-purified RNA. The yield of the thiamine pyrophosphate
(TPP) riboswitch aptamer was higher than 30% after purification
by anion-exchange chromatography.
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Fig. S1. Secondary structure model for cotranscriptional folding of the Escherichia coli thiM riboswitch in the presence (A) and absence (B) of TPP.
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Fig. S2. Dye-labeled TPP riboswitch (WT/24–68) binds TPP with nanomolar affinity. The affinity of TPP for the WT/24–68–labeled construct was estimated by
titrating TPP from 0 to 100 μM in the presence of 2 mM Mg2+ and quantifying the change in population of fully folded riboswitch molecules [high-fluorescence
resonance energy transfer (FRET) state occupancy] as a function of TPP concentration using single-molecule FRET measurements. Shown (black squares) is the
average high-FRET state occupancy value (total area under the curve) obtained by fitting population FRET histograms to three Gaussian distributions (low-,
intermediate-, and high-FRET) over three independent experiments. Each value was normalized to the percentage of high-FRET state occupancy observed at
100 μM TPP. The apparent dissociation constant was determined by fitting these data points to the equation y = ymax(x/x + Kd). The estimated Kd value from
these fitting procedures (fit shown in red) was 115 nM (5).
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