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SI Methods
Templates of Sensitivity Change. The similarity of measured and
predicted changes of sensitivity was measured using the templates
illustrated in Fig. 6.
For the stimulus account, templates were determined by

stimulus statistics (Fig. 2A). The boundaries of template regions
were 11 and 45 deg/s for the region of expected gain, 1.4 and 0.36
deg/s for the region of expected loss. No changes were expected
between the speeds of 0.36 and 11 deg/s.
For the system account, the template consisted of four regions

where the system account predicted gains and losses of sensitivity
(Fig. S3B). Because the predictions depended on locations of
maximal-sensitivity sets , the boundaries between regions were
derived in two steps. First, parameters of were estimated for
each stimulus context, as explained in section Modeling Spatio-
temporal Sensitivity (Methods). Second, five boundaries were
placed as explained in Fig. S3B.
Spatial boundary S was placed between the spatial asymptotes

of and (i.e., the asymptotes of parallel to the spatial-
frequency axis of the stimulus space). Temporal boundaries T1
and T2 were parallel to the temporal-frequency axis: T1 was
placed between the temporal asymptotes of and , and T2
limited the region of large expected changes of sensitivity at high
temporal frequencies. Speed boundaries V1 and V2 were drawn
diagonally, through the point of intersection of and
represented in Fig. S3 by the yellow disk.
Because parameters of differed across observers, the same

structure of template generated different shapes of template re-
gions in different observers (Fig. 5). Even though system templates
were derived frommeasured observer characteristics, themeasured
changes of sensitivity captured by the four regions of the system
template could be radically different from the changes predicted by
the system account. For example, if the measured distribution of
sensitivity had shifted in the direction opposite to that predicted by
the system account, the positive and negative measured changes of
sensitivity would be found in the regions where negative and posi-
tive changes were expected, respectively, yielding negative evidence
E∀ for the system account (Eq. 2).

Analysis of Sensitivity Changes Within Templates. Results would
agree with predictions if the measured gains were consistently
found where gains were expected, and the measured losses were
consistently found where losses were expected. The agreement
was quantified using cumulative index

Δ∀ =ΔG −ΔL; [S1]

where ΔG and ΔL were the mean changes of sensitivity on the
nodes of stimulus grid for which gains and losses of sensitivity
were expected, respectively. Because ΔG is expected to be pos-
itive, and ΔL is expected to be negative, the larger the value of
Δ∀ the better the match to template. Individual values of Δ∀ for
the system account are displayed in the bottom right corner of
every panel in Fig. 5. Errors of Δ∀ were estimated for every
observer. Measured sensitivity changes were resampled within
template regions, and distributional properties of Δ∀ were
computed from the resampled regional sensitivity changes. The
resampling analysis showed that the measured magnitudes of Δ∀
were unlikely to arise by chance (P < 0.01).
Cumulative evidence for alternative accounts of adaptation was

computed on the nodes of the stimulus grid according to Eq. 2.

For the system account, the two components of cumulative evi-
dence were

Eð+Þ =G1 −L2 [S2]

Eð−Þ =L1 −G2; [S3]

where Gi and Li stand for the mean gains and mean losses of
sensitivity in template regions 1 and 2, indicated by the subscripts
(Fig. 6A). For the stimulus account, component E(+) was the
same as in Eq. S2. However, component E(−) differed from Eq.
S3 because now cumulative evidence had to incorporate the
predicted absence of sensitivity change in the neutral region
(white region labeled ⊖ in Fig. 6B):

Eð−Þ =L1 −G2 −N; [S4]

where N was the mean absolute change of sensitivity in the
neutral region.
Confidence intervals for cumulative evidence E∀ were esti-

mated for every observer separately for the system account and
the stimulus account (Fig. 6). Individual sensitivity changes were
resampled separately on the nodes that supported either account
(E+) and the nodes that opposed either account (E−), and then
cumulative evidence E∀ = E(+) − E(−) was computed from the
resampled sensitivity changes. Significance of E∀ was evaluated
using 95% and 99% confidence intervals.

Outline of the System Account of Visual Adaptation
Here we summarize key steps in derivation of the optimal set:
a theoretical equivalent of the measured maximal-sensitivity curve
labeled “max” in Fig. 1D. A complete derivation is presented in
Gepshtein et al. (1). The theory predicts that the shape of the
curve remains invariant under changes in statistics of stimulation,
but the position of the curve in the stimulus space depends on
stimulus statistics (Fig. 2C).

Joint Measurement Uncertainty. Neurons tuned to stimuli in dif-
ferent parts of the domain of spatiotemporal contrast sensitivity
function (the “stimulus space”) have receptive fields of different
size. The neurons are therefore expected to convey information
about stimulus parameters with different uncertainty (different
precision). According to the uncertainty principle formulated by
Gabor (2), uncertainty of measuring stimulus frequency content is
low for large receptive fields and high for small receptive fields.
Conversely, the uncertainty of measuring stimulus location is high
for large receptive fields and low for small receptive fields. The
argument applies equally to the spatial and temporal aspects of
stimuli. Assuming that the same neurons are used to measure the
locations and frequency content of stimuli, Gepshtein et al. (1)
derived a joint uncertainty function equation 7 in ref. 1) that
characterizes the distribution of expected uncertainty of mea-
surement across the stimulus space.

Invariant Shape of the Optimal Set.Minima of the joint uncertainty
function for every speed form the “optimal set” of spatiotemporal
measurement—a set of stimulus conditions at which individual
speeds are measured with minimal uncertainty. This optimal set
may have a variety of shapes in the stimulus space, depending on
how the components of measurement uncertainty combine in the
joint uncertainty function. However, the optimal set is an ab-
straction that disregards two basic facts of biological vision.
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First, the extent of neuronal receptive fields across speeds is not
negligible. Visual information is necessarily integrated across
speeds. When this constraint is taken into account, the shape of
the optimal set has an invariant shape: a rectangular hyperbola in
the parameter space (equation 10 in ref. 1).

Position of the Optimal Set. Second, different speeds are not equally
important for perception. Because of its limited resources, bi-
ological vision cannot optimize measurement of every speed.
Visual systems must determine how to allocate resources across
stimuli, according to stimulus importance or frequency of the
stimulus in the environment. In the framework of Gepshtein et al.
(1), the most suitable conditions for speed estimation with limited
resources are obtained when contributions of individual speeds
are weighted according to the distribution of speed in the stimu-
lation. In effect, the position of the optimal set in the stimulus
space changes together with the distribution of speed in the en-
vironment (equation 21 and figure 8 in ref. 1). For example, an
increase in the mean stimulus speed leads to a shift of the optimal
set, as illustrated in Fig. 2C. [The space-time representation of
stimuli used by Gepshtein et al. (1) is converted to the spectral

representation using standard assumptions (3, 4) summarized in
ref. 1, pp 14–15.]
Changes in other aspects of stimulus statistics also affect the

position of the theoretical optimal set. In this study we focus on
changes in the mean speed of stimulation, because the ensuing
pattern of sensitivity changes is highly distinctive: the gains and
losses of sensitivity expected by the system account within speeds
(Fig. 2C) stand in stark contrast to the monotonic transition
from losses to gains across speeds expected by the stimulus ac-
count (Fig. 2B).
The theoretical optimal set corresponds to the empirical

maximal-sensitivity set (represented by curve “max” in Fig. 1D
and by the white crosses in Fig. 3B). Notice that, according to the
system account, the prediction is that changes in stimulus sta-
tistics lead to a shift of the optimal set, and not to a rigid
translation of the distribution of sensitivity in the stimulus space.
As the position of the optimal set changes, the sensitivity is or-
ganized around the new location of the optimal set in a way that
is generally different from a rigid translation of the distribution
of sensitivity.
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Fig. S1. Results of experiment 2: Sensitivity estimates within speeds. The central panel reproduces the stimulus grid from Fig. 3A. Disk locations represent the
tested spatiotemporal stimulus conditions, and disk colors represent whether stimulus frequency increased (black), decreased (white), or did not change (gray)
in the high-speed context relative to the low-speed context. (Insets) These seven panels contain scatter plots of sensitivity at the seven stimulus speeds using the
fitted Kelly functions vs. the “raw” estimates produced by our measurement procedure. Symbol shapes indicate the context of stimulation: circles for high
speed and squares for low speed. Displays of correlation coefficients on top left of every inset indicate that the raw estimates of sensitivity were well ap-
proximated by Kelly functions. The data deviating from the diagonal line indicate conditions where the Kelly model fitted sensitivity estimates less successfully.
(We found that most of these conditions were localized at the top right of the main panel, i.e., at high spatiotemporal frequencies. These conditions had only
a small effect on the template-matching computation for Fig. 6A because they were outside of the regions where gains and losses of sensitivity were expected
by the system account.) Adaptation caused both increments and decrements of sensitivity within every tested stimulus speed, represented by color: red for
increments and blue for decrements of sensitivity change, in the high-speed context relative to the low-speed context.
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Fig. S2. Sensitivity maps for all observers are displayed for the high-speed and low-speed contexts in the first and second columns, respectively, using the same
convention as in Fig. 4A. Change maps for all observers are displayed in the third column. In contrast to Fig. 5, here the magnitudes of sensitivity change are
scaled by posterior error estimates provided by the Bayesian estimation procedure (Methods).
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Fig. S3. Derivation of the system template of sensitivity change. (A) The black curves represent conditions of maximal sensitivity predicted by the system
account of adaptation (1) for the low-speed (thin curve) and high-speed (thick curve) environments. The yellow disk marks the intersection of the curves. Focal
changes of sensitivity are expected in specific regions of the change map relative to the maximal sensitivity curves. (The theoretical change map in the
background marks the expected gains and losses of sensitivity using shades of red and blue, respectively, i.e., using the same conventions as Figs. 4B and 5.) As
stimulus context changes from low-speed to high-speed, the horizontal branch of the curve moves up on the temporal axis (upward black arrow), creating
regions of gains and losses of sensitivity at high and low temporal frequencies, respectively. Similarly, the vertical branch of the curve moves down on the
spatial axis (leftward black arrow), creating regions of gains and losses of sensitivity at low and high spatial frequencies, respectively. (B) The black lines indicate
boundaries between the regions where distinct changes of sensitivity are expected. Spatial boundary S separates gains from losses at low spatial frequencies,
and temporal boundary T1 separates gains from losses at low temporal frequencies. Speed boundaries V1 and V2 separate regions across speeds, and temporal
boundary T2 limits the region of expected sensitivity loss at high spatial frequencies.
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