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SI Methods
Monte Carlo Newton–Raphson Algorithm. In this section, we discuss
a Monte Carlo Newton–Raphson algorithm for maximizing
a penalized log-likelihood under the iCluster+ model. The joint
log-likelihood of (xijt, zi) can be written as
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where the summation is due to the conditional independence
assumption of xijt given zi. Here, f ðziÞ is the density function of
the standard multivariate normal distribution N(0, Ik), and the
conditional density f ðxijtjzi; αjt; βjtÞ has the form of normal, Ber-
noulli, multinomial, or Poisson density function depending on
the type of genomic variable. Specifically,
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if xijt is a continuous, binary, categorical, or count variable, re-
spectively. In the above, μjt = αjt + βjtzi, ξtj = expðαjt + βjtziÞ,
ηjt = αjt + βjtzi, ϕjct = αjct + βjctzi, and I(xijt = c) = 0 if xijt = c, and
0 otherwise.
To identify genomic variables that make important contribu-

tion to the latent variables, we apply the L1-norm penalty (1) and
consider the following penalized likelihood estimation:

max
αjt;βjt

ℓ
�
xijt; zi; αjt; βjt

�
−
Xm
t= 1

Xpt
j= 1

λt
��βjt��1;

where kβjtk= jβj1tj+ . . . + jβjktj is the L1-norm penalty and λts are
nonnegative tuning parameters. Due to the singularity of the L1-
norm penalty at βjst = 0, some estimated βjst will be exactly zero.
If the entire vector βjt is zero, then the corresponding genomic
variable is effectively removed from the model. In addition to
variable selection, the lasso-type procedures have also been
shown to have good prediction ability in both finite samples and
asymptotic situations (2, 3).
To estimate the parameters αjt and βjt, we apply a modified

Monte Carlo Newton–Raphson algorithm (4, 5). Conditional
on zi, the penalized estimation can be divided into

Pm
t=1pt sep-

arable optimization problem. Thus, for ease of presentation, we
use generic notations by omitting index j and t for ℓjt, αjt, βjt and
index t for λt in what follows. Specifically, we solve a constrained
minimization problem of the following form going through
j= 1;⋯; pt; t= 1;⋯;m:

min
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where ℓ=
Pn

i=1log  f ðxijzi; α; βÞ. Let ~α and ~β be the current
parameter estimates.

Let ηi = α+ βzi, ~ηi = ~α+ ~βzi, ~η= ð~η1; . . . ; ~ηnÞ′, ui = ∂ℓð~ηÞ=∂ηi, and
wi = ∂ℓ2ð~ηÞ=∂η2i . Following ref. 4, we form a quadratic approxi-
mation to the log-likelihood ℓ (Taylor expansion around current
estimates) and consider the following optimization problem:
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where yi = ~α+ ~β zi −
Pn

i=1ui=wi. Following ref. 4, we apply the
coordinate descent algorithm to solve the optimization problem.
To be specific, we iterate among the following updates for α, βs:

β̂s =

 P
iwizisy

ðsÞ
iP

iwiz2is
−
λ

2

!
+ ; s= 1; . . . ; k

α̂=
P

iwiyi −
Pk

s= 1 β̂szisP
iwi

;

where yðsÞi = yi − α−
P

l≠s βlzil is the partial residual for fitting βs.
Notice that, in this update, yðsÞi also depends on zi.
However, zi is not observed in our model. A Markov chain

simulation is particularly suitable for the latent variable formu-
lation (6). The basic idea is to replace the expression in the
parameter updates shown above by its expectation with respect
to zi given xijt by repeatedly sampling (typically we use 1,000
draws) the latent variable zi from its joint posterior distribution
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using a random-walk Metropolis–Hasting algorithm (7, 8). We
then calculate parameter updates by their sample averages
over the repeated draws.

Clustering the Latent Variables. Sample clusters are assigned by the
values of the latent variables. We use K-means clustering to divide
the n samples into g clusters using k latent variables where g = k
+ 1; in the null model case where k = 0 (intercept only), this
implies that all samples belong to one cluster. Following a gen-
eral principle (9) for separating g clusters among the n data
points, a rank-k approximation where k ≤ g − 1 is sufficient.

Gene-Centric Identification of Concordant Copy Number and
Expression Alterations. Somatic copy number alterations that
characterize a particulate integrated cluster as identified by our
method often span broad regions covering up to thousands of
genes. To gain additional insights, we performed a gene-centric
integration for each cluster for cancer gene identification. For
each gene, we applied independent two-sample t tests on its copy
number and on its mRNA expression between patient samples in
cluster k vs. the rest. We then use Fisher’s method to combine
the P values as −2

Pr
i=1log  Pi, which has a χ2 distribution under

the null with 2r (r is the number of independent tests being
combined) degrees of freedom. A large χ2 statistic provides strong
evidence for concordant events (e.g., copy number-induced
expression changes) and indicates candidate cancer genes that
characterize a distinct molecular subgroup.

Data Processing. In the Cancer Cell Line Encyclopedia (CCLE)
dataset, we integrated m = 3 data types: somatic mutation by
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massively parallel sequencing (t = 1), chromosomal copy number
by Affymetrix SNP Array 6.0 (t = 2), and gene expression by
Affymetrix Human Genome U133 Plus 2.0 array (t = 3) mea-
sured in a total of n = 729 cancer cell lines with all three data
types available. For a given data type t, it consists of pt genomic
variables, which can be annotated as genes, exons, genomic re-
gions, CpG sites, coding or noncoding mRNA, and other genetic
markers, depending on the data type. For somatic mutation data
(t = 1), a gene by sample matrix of binary values (1, mutated; 0,
not mutated) was generated for clustering, which included p1 =
1,670 genes that were mutated in ≥1% of the cell lines.
For the copy number data (t = 2), the circular binary seg-

mentation (CBS) segmented data based on Affymetrix SNP
Array 6.0 was used. Nonredundant copy number regions were
first obtained by adapting a method that is described in ref. 10.
Briefly, we first form genomic “neighborhoods” (regions) along
a chromosome defined by consecutive positions with a maximum
Euclidean distance (based on copy number log-ratio segmented
values) between any adjacent two probes smaller than 0.01; this
resulted in a total of p2 = 8,432 copy number regions. Each re-
gion was then represented by its medoid signature, reducing the
dimension of the data from close to 2 million genomic positions
on SNP Array 6.0 to 8,432 unique copy number regions.
For the gene expression data (t = 3), we included p3 = 4,000

most-variable genes based on their expression profile across the
cell lines. The order of data types t = 1, 2, 3) is imposed in the
algorithm flow for the purpose of specifying the corresponding
type of generalized linear model (11). In the dataset of application
in this study and in ref. 12, we directly modeled the CBS (13, 14)
segmented copy number measures (logR values from array com-
parative genomic hybridization or genotyping arrays) to avoid any
information loss by generating discrete calls. Therefore, copy
number-segmented log-ratio values, gene expression, and meth-
ylation β-values after proper transformation and normalization
were modeled using linear regression with normal errors in this
study. However, the iCluster+ framework can easily accommodate
discretized calls (gain, loss, expressed, unexpressed, methylated,
unmethylated), depending on user preference, by simply switching
to binomial or multinomial regression for these data types.
Similar data preprocessing procedures were applied to the

Cancer Genome Atlas (TCGA) colorectal cancer (CRC) dataset
with slight variation. For mutation data generated by whole-
exome sequencing (15), a gene by sample matrix of binary values
(1, mutated; 0, WT) was generated from a multiple alignment
format data. Significantly mutated genes (q ≤ 0.1), as identified
by the MutSig algorithm (15), were included for clustering. The
copy number region method was applied to segmented log-ratio
data from Affymetrix SNP Array 6.0 and a data matrix of 6,587
copy number regions by 189 CRC samples was used as the input
data. Gene expression was measured by RNA-sequencing plat-
form. Transcript levels were quantified in reads per kilobase of
exon model per million mapped reads (RPKM) (16). Our
method uses Poisson regression for count variables. However, we
found it was more effective to model the logarithm-transformed
RPKM data with normal distribution with independent mean
and variance parameters. Median absolute deviation was used to
select the top 2,000 most-variable genes for clustering. For DNA
methylation, the methylation β-values (on logit scale) from the
HumanMethylation27 array platform was used. Median absolute
deviation was used to select the top 2,000 most-variable CpG
sites for clustering.

Computing Time. The tuning procedure for the CCLE dataset is
computationally intensive because it involves 729 samples over 20
cancer types; it is a highly heterogeneous dataset, and we expect
that the number of distinct clusters is large. Therefore, the model
selection included a series of 19 k’s (k = 1–19). For a dataset that
involves a single cancer type (TCGA CRC), we typically run k =

1–5, which requires much less computing time with the same
computing capacity. By parallel processing using 30 cores on
a 3.2 GHz Xeon Linux computing cluster, the model-tuning
procedure finished in 5 d for the CCLE dataset, and in 16 h for
the TCGA CRC data.

Stability. The computational complexity of our method that im-
plements a modified Monte Carlo Newton–Raphson algorithm is
high, and it is further compounded by the large sampling space
of the lasso parameters. In our analysis procedure, we excluded
the uniform-design sampled vectors of lasso parameter λ (re-
scaled to be between 0 and 1 in our method) that lead to models
either too dense [close to the full model, including all genomic
features (λ ≥ 0.95)], or too sparse, including too few features
(λ ≤ 0.05)] in any data dimension to avoid the extreme cases.
This strategy is in part to reduce computational complexity, and
by doing so, the variability in the outcome (both the selected
number of clusters and the cluster membership assignment) is
kept sufficiently small.
To assess variation in the selected number of clusters, we re-

peated the same run for the CCLE dataset five times for k = 1 −
19 using our setup by filtering out the extreme cases. Fig. S8
shows the average of the five repeats with error bars (some error
bars do not show on the graph because they are close to zero),
suggesting the variation is small.
Due to the stochastic nature of Markov chain Monte Carlo

sampling and the iterative Monte Carlo Newton–Raphson pro-
cedure, each independent run of iCluster+ may lead to a slightly
different solution. To assess the degree of such variation in cluster
assignment, we repeated the 12-cluster run 10 times (given selected
lasso parameter values obtained from the tuning process). The
average Rand index (17) between any random pair of repeats that
measures the agreement for the two partitions is 93% (±1%). We
repeated this for the 14-cluster run and obtained similarly high
agreement (93% ± 1%). We also observed that part of this small
variation was due to the K-means step in our algorithm, which
assigns sample cluster membership on the basis of the latent var-
iables (a matrix of K × n).
The silhouette statistic (18) measures the strength of cluster

membership assignment for each individual sample. A sample
that clusters tightly to its corresponding cluster will have a high
silhouette width si. A sample that clusters loosely will have
a low silhouette width. Fig. S9 shows the silhouette profile for
the 729 cancer cell line samples. The average silhouette in-
dicates the strength of each cluster. The silhouette profile can
be used to selected “core” samples most representative of the
clusters and thus most reproducible.
Note that the choice of 12-cluster vs. other possible choices (e.g.,

14-cluster) is not mutually exclusive. Table S1 compares the cluster
assignment between 12-cluster and 14-cluster assignments. It is
clear that the 14-cluster solution primarily involves further sub-
divisions and regrouping among clusters that have relatively low
average silhouette measures (Fig. S9) and heterogeneity in tissue
composition, which include 7, 8, and 12. Cluster 6 is subdivided into
large intestine vs. endometrial because of biological difference.

Subsampling. We conducted a subsampling experiment using the
TCGA CRC dataset to illustrate the stability of our integrative
clustering algorithm. Specifically, we generated 100 random
subsamples (without replacement) of the original data with
a sampling ratio of 0.8 to preserve the general structure (19). We
ran iCluster+ for k = 1 − 5 (number of latent variables) on each
of the subsampled datasets using the lasso parameter tuning
procedure as described previously. For a randomly chosen pair
of subsampled datasets, a measure of agreement between the
clustering is computed using the adjusted Rand index (17, 20).
When two partitions agree perfectly, the adjusted Rand index is 1.
When the agreement is random (the degree of agreement
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equals the expected value under a model of randomness from
the generalized hypergeometric distribution), the adjusted Rand
index is zero. We exhausted all possible pairs, and the box plots
of adjusted Rand indices computed for the pairs for g = 2 − 6
(number of clusters) are shown in Fig. S10. The mean adjusted
Rand index averaged over all possible pairs for g = 2 − 6 is 0.92

0.90, 0.68, 0.62, and 0.54. For three-cluster solutions, cluster
assignments of any random subsamples of the colorectal cancer
dataset are on average 90% concordant, suggesting stability of
the results. Based on the stability plot, three-cluster is the de-
marcating point, which is consistent with our proposed criteria
based on percent explained variation (Fig. S1).
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Fig. S1. Model selection in (A) CCLE dataset, (B) TCGA CRC dataset, and (C) NCI60 dataset. The optimal g (number of sample clusters) is chosen as the transition
point beyond which the size of the increase in percent explained variation is diminishing. The jaggedness of the curve observed in the NCI60 dataset may
reflect its smaller sample size compared with the other two datasets.
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Fig. S2. Repeated run of the CCLE dataset.

Fig. S3. Subsampling of the TCGA CRC dataset.
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Fig. S4. Integrative clustering found nine cell line clusters in the NCI60 dataset (DNA copy number and gene expression data). (A) The 58 tumor cell lines
representing nine different tumor types, which are arranged by their cluster ID. (B and C) Identified genomic regions and genes that contribute to cell-line
clustering. As shown in the figure, the cluster assignment was determined by the joint patterns of the copy number and gene expression. For example, five of
six leukemia cell lines had similar copy number and gene expression patterns, and were thus assigned to the same cluster. The remaining leukemia cell line had
a different copy number pattern (amplification on chr3 q11–q34), and was thus assigned to another cluster. Similarly, the colon cell lines were divided to two
subclusters because of the different copy number patterns. The top enriched biological processes are shown for each subset of genes on C. The values in
parentheses are the fold enrichment and adjusted P value.

Fig. S5. Selective amplification and overexpression of MITF in melanoma cell lines in the NCI60 dataset (Upper). Leukemia cell lines show overexpression of
MYB (Lower). CN, copy number; GE, gene expression.
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Fig. S6. The integrated cell line clusters show different drug sensitivity. The integrated cluster ID is the same as those assigned in Fig. 1 of the main text.
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Fig. S7. Silhouette profile of the CCLE samples.
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Fig. S8. Three-cluster solution among 189 TCGA colorectal cancer samples. Heat map display of lasso-selected cluster-discriminant features. Rows are features
and columns are tumor samples. The first panel shows genes that are mutated (black) or not mutated (white) in each cluster; the second shows genomic regions
amplified (red) or deleted (blue); the third shows genes hypermethylated (red) or hypomethylated (blue); and the fourth shows genes overexpressed (red) or
underexpressed (blue) in each cluster.
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Fig. S9. Four-cluster solution among 189 TCGA colorectal cancer samples. (Top) Annotations of microsatellite instability (MSI-H), CpG-island methylation
phenotype (CIMP-H), mutator phenotype associated with deficient DNA damage repair (hypermutated), and BRAF and TP53 mutation status. The second panel
shows genes that are mutated (black) or not mutated (white) in each cluster; the third shows genomic regions amplified (red) or deleted (blue); the fourth
shows genes hypermethylated (red) or hypomethylated (blue), and the fifth shows genes overexpressed (red) or underexpressed (blue) in each cluster.
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Fig. S10. Integrated colorectal cancer subtypes show great variation in chromosomal instability as measured by the fraction of the genome altered (Left).
There are no significant differences in tumor purity as measured by the ABSOLUTE algorithm (1).

Table S1. Comparison of 12-cluster and 14-cluster assignments of the CCLE samples

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 29 0 0 0 0 0 0 0 0 0 0 0 1 1
2 0 28 0 0 0 0 0 2 1 0 0 0 0 0
3 0 10 89 0 0 0 1 0 0 0 0 0 3 2
4 0 0 0 24 1 0 5 0 1 1 0 0 0 0
5 0 0 0 0 51 0 1 1 0 1 0 0 0 8
6 0 0 0 1 0 26 27 0 3 1 0 0 0 2
7 2 3 0 0 1 0 33 15 0 0 1 1 1 2
8 0 0 0 5 0 1 2 26 34 0 5 0 3 1
9 0 0 0 1 1 4 1 0 3 39 0 3 6 4
10 0 0 0 0 2 0 0 0 0 0 50 0 1 0
11 1 0 0 0 0 3 0 1 2 0 0 53 8 2
12 1 0 0 0 4 3 5 4 2 1 8 1 43 15
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