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1. Network datasets

In this section we provide details on network data employed in the main text.

Star, Complete, ER and BA networks. Figure 1 of the main text considers four undirected, binary
networks with n = 100. In the star network, nodes 1,2,...,n — 1 are linked to node n only, whereas in the
complete network each node is linked to all the others. The Erdds-Rényi (ER) network was built by linking
200 randomly selected node pairs, so to have an average degree (k) = 2 x 200/n = 4. The Barabdsi-Albert
(BA) network was built with the standard “preferential attachment” algorithm [1]: starting from a connected
node pair, the remaining 98 nodes were iteratively added one at a time, by attaching each of their 2 edges
to a node of the current network, randomly selected with a probability proportional to its current degree
((ky =2 x197/n ~ 4).

Monkeys. Undirected, weighted network, n = 20. Source: Borgatti & Everett, 1999, p. 380 [2]. As
described in [3], “These data represent 3 months of interactions among a troop of monkeys, observed in the
wild by Linda Wolfe as they sported by a river in Ocala, Florida. Joint presence at the river was coded
as an interaction and these were summed within all pairs”. Our results are consistent with [2], where it is
acknowledged that no significant core-periphery structure exists in this social network.

Karate. Undirected, binary network, n = 34. Source: Zachary, 1977, p. 456-457 [4]. The network represents
the social interaction among the members of a university-based karate club from 1970 to 1972. An edge
exists between two nodes when “..the two individuals being represented consistently interacted in contexts
outside those of karate classes, workouts, and club meetings...” [4].

Netscience. Undirected, weighted network, n = 379. Source: Newman, 2006 [5, 6]. It is the largest
connected component of the network describing the collaborations (up to year 2006) among researchers in
network science, the weight of the edge connecting two researchers being proportional to the number of
papers they have co-authored [5].

Airports. Directed, weighted network, n = 2868. Source: data downloaded from Openflights.org and
processed by T. Opsahl, 2011 [7, 8]. Tt is the largest strongly connected component of the network describing
the airports and their flight connections at the worldwide level. The weight of the (directed) edge is the
number of routes between the two airports.

Internet. Undirected, binary network, n = 11745. Source: Newman, 2006 [9, 6]. As described in
[6], it is a symmetrized snapshot of the structure of the Internet (for July 22, 2006) at the level of au-
tonomous systems, reconstructed from BGP tables posted by the University of Oregon Route Views Project
at archive.routeviews.org.

Ppi. Undirected, binary network, n = 1458. Source: CCNR, University of Notre Dame [10]. It is the largest
connected component of the protein-protein interaction network of the yeast Saccharomyces cerevisiae, as
analyzed in [11].

Neural. Directed, weighted network, n = 239. Source: elaboration by Watts and Strogatz [12] from data

LCorrespondence and requests for materials should be addressed to C.P. (carlo.piccardi@polimi.it)



by White et al., 1986 [13]; downloaded from [6]. It is the largest strongly connected component of the
neural network of the nematode worm Caenorhabditis elegans, where an edge joins two neurons if they are
connected by either a synapse or a gap junction.

Wtn. Directed, weighted network, n = 181. Source: elaboration by Piccardi and Tajoli [14] from data
of the Direction of Trade Statistics of the International Monetary Fund [15]. This network is the largest
strongly connected component of the network of bilateral trade flows recorded in 2008 by importing countries,
measured in US dollars at current prices.

2. Core-periphery profile

The core-periphery profile of the network ag, k =1,2,...,n, has been formally introduced in the main text
of the paper. We repeat here the algorithmic definition:

Step 1 : Select at random a node ¢ among those with minimal strength (o; < o; for all j € N). Modulo
a relabeling of the nodes, we can assume, without loss of generality, that the selected node is 1. Set
Py = {1}, hence o; = 0.

Step k£ =2,3,...,n : Select the node attaining the minimum in:
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If it is not unique, select at random one of the nodes with minimal strength o}, among those attaining
the minimum. Without loss of generality, we can assume that the selected node is k. Set P, =
Py U{k} ={1,2,...,k}.
We now prove that, for whatever network, the core-periphery profile is a non-decreasing sequence.
Proposition: a1 > ap forall k=1,2,...,n—1.

Proof: We first note that ap = minyen\ (1} (m1m1n + mpmp1) / (71 +7,) > 0 = ;. Then the proposition
is proved by induction if we show that, for any k > 2, aj > aj_1 implies apy1 > ay.

We preliminary observe that, for any a,c¢ > 0 and b, d > 0, the following properties hold true:

(i) (a+c¢)/(b+d) > a/bif and only if ¢/d > a/b;
(ii) (a+c¢)/(b+d) < c¢/d if and only if ¢/d > a/b;

(iii) given a set {c1/d1,ca/da,...} with d, > 0 and ¢, /dp, > a/b for all h = 1,2,. .., and letting ¢, /d,, =
ming e,y ¢n/dn, we have
a + cp Cm
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Properties (i) and (ii) are straightforward to check, whereas property (iii) is slightly more involved: if the min
in (iii) is attained by h = m, then property (iii) follows from (ii). If the min in (iii) is attained by h = H # m,
then assuming (a+cp)/(b+cm) > ¢m/dmy would give, thanks to property (ii), (a+cp)/(b+cm) > cm/dm >
(a+ ¢m)/(b+ dy,), which contradicts the hypothesis that h = H attains the min of (a + ¢)/(b+ dp).

Now, let us define the quantities
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Figure 1: Time complexity of the algorithm for deriving the core-periphery profile. The dots
correspond to the networks analyzed in the main text (see Sec. 1 of this document). The straight line with
slope equal to 3 (in the log-log plane) is indicative of a time complexity O(n?) for large n. CPU execution
time refers to a Matlab implementation running on a 2.9Ghz Intel Core.

so that we can write (compare with (1))
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Assuming that aj > aj_; is equivalent to assuming (due to property (i) that ¢!~V /d* ™" > (k=1 /p(k=1)
for all h € N\ Py_1, which also guarantees (property (iii)) that ax < mingen\p, , czkfl)/dzkfl). At the

next step, we have

a® + ¢l

Q1 = hele{IPk o0+ n dék) .
where a®) /pF) < mingen\ p,_, cgkfl)/dgkfl) < mingen p, cgkfl)/dzkfl) because (N \ Py) C (N \ Pr—_1),
ey > ¢! ™ because Py 5 Pioy, and &; = i V. Thus, we have ay = o) /b®) < minjen p, ¢ /d;7,
which is obviously less than or equal to czk) /d;lk) for all h € N\ Px. Property (i) then guarantees that
Oft1 = Q. |

3. Computational issues

Computational complexity. The straightforward implementation of the above algorithm, with the ex-
haustive search of the node h attaining the minimum in (1), has time complexity O(n?). This is confirmed
by numerical tests performed on the same pool of artificial and real-world networks considered in the main
text (see Sec. 1 of this document), and summarized in Fig. 1 (the Matlab code can be requested to the
corresponding author). It is presumable that the time requirement could be considerably reduced, perhaps
at the price of a (mild) suboptimality. For instance, when examining the set of p-nodes (the periphery in
the strict sense) for which the core-periphery profile is 0, one could stop the min search in (1) as soon as a
node k is found such that «ay, is still 0. Given that many networks have a large periphery, this would imply
a dramatic decrease in the time requirement. Research on this and other possible numerical improvements
is in progress.

Robustness to randomicity in the core-periphery profile algorithm. In the Methods section of
the main text, it is pointed out that the above algorithm may have some randomicity when, at step 1, many
nodes share the minimum strength o; and when, at step k, the minimum of «ay, is equivalently attained by



network min(C) max(C) mean(C) std(C)/mean(C)

monkeys 0.261 0.265 0.263 8.25x1073
karate 0.709 0.713 0.711 3.26x1073
netscience 0.644 0.645 0.644 1.11x10~4
ppi 0.767 0.768 0.768 4.25%x1074
airports 0.823 0.824 0.824 8.58x107°
internet 0.942 0.942 0.942 4.31x107°
neural 0.940 0.940 0.940 0
wtn (binary) 0.349 0.349 0.349 0
wtn (weighted)  0.819 0.819 0.819 0

Table 1: Results of the randomization of the core-periphery profile algorithm. For each network,
the algorithm is run 100 times and the corresponding cp-centralization C' is computed.

many nodes having the same strength. To assess the impact of this randomicity, we run the algorithm 100
times for each of the real-world networks considered in the paper, and we computed the statistics of the
corresponding cp-centralization C'. The results are reported in Table 1. The computation of C' appears to
be very robust, as the ratio std(C')/mean(C) ranges from 0 to 8.25x1073, with a tendency of being even
smaller for larger n.

Exact vs. approximate a-periphery. In the main text, the sets yielded by the core-periphery profile
algorithm are proposed as heuristic approximations of the a-periphery, which is, by definition, the largest
subnetwork S with ag < a. More precisely, we take the largest Py such that a; < a as our approximation
of the a-periphery. It is not possible, in general, to assess the quality of such an approximation, since the
problem of finding the a-periphery falls in a class known to be computationally untractable [16]. But we can
do it on very small networks, where the exact a-periphery can be computed by exhaustively enumerating all
the subnetworks.

Figure 2 reports the results of the analysis for three networks: the toy-network discussed in Fig. 4 of
the main text (n = 16), an ER network with n = 20, and a BA network also with n = 20 (see Sec. 1 of
this document for details). For each network, we compute the persistence probabilities of all the 2™ possible
subnetworks (they are more than 10° when n = 20), and we put a dot at coordinates (k, as) if as is the
persistence probability of a k-node subnetwork. For a given «, we obtain an exact a-periphery by taking one
of the rightmost dots (i.e., one of those with largest k) falling not above the horizontal line g = « (black
dots in Fig. 2). Conversely, if we denote by (k, a}) the coordinates of the lowest point having abscissa k, we
can say that the subnetwork corresponding to (k,aj) is an a-periphery for all af < o < aj ;. Therefore,
assessing the quality of the approximation boils down to measuring the difference between the curves «j
(i.e., the “exact” core-periphery profile) and «y (i.e., our “approximate” core-periphery profile proposed in
the main text). Figure 2 points out that, in the cases here considered, the two curves are very close or even
coincident.
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