## The structures of three human metabolites of the algal hepatotoxin okadaic acid

Li Liu, Fujiang Guo, Sheila Crain, Michael A. Quilliam, Xiaotang Wang and Kathleen S. Rein

- S1. <sup>1</sup>H NMR of metabolites 1 and 2.
- S2. COSYs of metabolites 1 and 2 from 1.0-2.3 ppm and 3.2-4.3 ppm of <sup>1</sup>H NMR
- S3. TOCSYs of metabolites 1 and 2 from 0.7-2.2 ppm and 3.2-4.3 ppm of <sup>1</sup>H NMR
- S4. HSQCs of metabolites 1 and 2 from 55-85 ppm of <sup>13</sup>C NMR and 3.0-5.0 ppm of <sup>1</sup>H NMR
- S5. HSQCs of metabolite 1 and 2 from 110-150 ppm of <sup>13</sup>C NMR and 3.5-5.5 ppm of <sup>1</sup>H NMR
- S6. Table of <sup>1</sup>H and <sup>13</sup>C chemical shifts for metabolites 1 and 2 and COSY and TOCSY correlations for metabolite 1.
- S7. HRESIMS of metabolite 1
- S8. HRESIMS of metabolite 2
- S9. HRESIMS of metabolite 4



S1. <sup>1</sup>H NMR of metabolites1 (top) and 2 (bottom)





H12/H11

H22/H21b

H7/H6b

H4/H5b

4/H3b

S2. COSY of metabolites1 (top) and 2 (bottom) from 1.0-2.3 ppm and 3.2-4.3 ppm of <sup>1</sup>H NMR



S3. TOCSY of metabolites 1 (top) and 2 (bottom) from 0.7-2.2 ppm and 3.2-4.3 ppm of  $^{1}$ H NMR



S4. HSQC of metabolite 1 (top) and 2 (bottom) from 55-85 ppm of  ${}^{13}$ C NMR and 3.0-5.0 ppm of  ${}^{1}$ H NMR



S5. HMBC of metabolite1 (left) and 2 (right) from 110-150 ppm of  ${}^{13}$ C NMR and 3.5-5.5 ppm of  ${}^{1}$ H NMR

|       | Metabolite 1                               | Metabolite 1 |                                     | Metabolite 2                     |                  |        |
|-------|--------------------------------------------|--------------|-------------------------------------|----------------------------------|------------------|--------|
| Unit  | $\delta_{\rm H} (J \text{ in Hz})^{\rm a}$ | δc           | <sup>1</sup> H- <sup>1</sup> H COSY | TOCSY <sup>b</sup>               | $\delta_{\rm H}$ | δc     |
| 1     | -                                          | 181.07       |                                     |                                  | -                | 181.88 |
| 2     | -                                          | 76.04        |                                     |                                  | -                | 76.66  |
| 3a/b  | 1.63/2.06                                  | 46.19        | 4                                   | 4, 5a/b                          | 1.63/1.97        | 46.22  |
| 4     | 4.09                                       | 69.20        | 3a/b, 5b                            | 3a/b, 5, 44                      | 4.11             | 69.03  |
| 5     | 1.29/1.80                                  | 33.92        | 4, 6a/b                             | 3a/b, 6a/b                       | 1.32/1.80        | 33.15  |
| 6     | 1.65/1.97                                  | 27.81        | 7, 5a/b                             | 5a/b, 7                          | 1.67/1.97        | 27.91  |
| 7     | 3.37                                       | 73.23        | 6a/b                                | 6                                | 3.41             | 73.09  |
| 8     | -                                          | 96.62        |                                     |                                  | -                | 96.83  |
| 9     | 5.28                                       | 123.49       | 43                                  | 11a/b, 12, 43                    | 5.52             | 122.90 |
| 10    | -                                          | 138.81       |                                     |                                  | -                | 137.41 |
| 11    | 1.85/1.97                                  | 33.98        | 12                                  | 9, 12, 13, 14, 15, 16,           | 1.97             | 29.41  |
| 12    | 3.80                                       | 71.81        | 11a/b, 13                           | 9, 11a/b, 13, 14, 15, 16, 42, 43 | 3.81             | 71.79  |
| 13    | 2.37                                       | 43.29        | 12, 14, 42                          | 11a/b, 12, 14, 15, 16, 17, 42    | 2.36             | 43.16  |
| 14    | 5.91                                       | 137.68       | 15, 13                              | 11a/b, 12, 13, 15, 16, 18, 42    | 5.93             | 137.52 |
| 15    | 5.50                                       | 132.12       | 14, 16                              | 11a/b, 12, 13, 14, 16, 18, 42    | 5.51             | 132.00 |
| 16    | 4.65                                       | 79.58        | 15, 17a/b                           | 11, 12, 13, 14, 15, 18           | 4.66             | 80.46  |
| 17    | 1.59/2.19                                  | 31.42        | 16, 18a/b                           | 13, 18                           | 2.19/1.60        | 31.36  |
| 18    | 1.86/2.21                                  | 37.10        | 17a/b                               | 14, 15, 16, 17a/b,               | 2.20             | 37.35  |
| 19    | -                                          | 106.14       |                                     |                                  | -                | 106.87 |
| 20    | 1.85/2.00                                  | 38.01        | 21a                                 |                                  | 1.85/2.01        | 37.98  |
| 21    | 1.78/1.89                                  | 27.36        | 20, 22                              |                                  | 1.78/1.90        | 27.47  |
| 22    | 3.64                                       | 71.38        | 21a/b, 23                           | 24, 41                           | 3.64             | 71.22  |
| 23    | 3.41                                       | 78.11        | 22, 24                              | 24, 41                           | 3.41             | 77.94  |
| 24    | 4.07                                       | 72.01        | 23, 41a                             | 22, 23, 41                       | 4.07             | 71.96  |
| 25    | -                                          | 146.28       | 2                                   |                                  | -                | 146.87 |
| 26    | 3.95                                       | 85.40        | 27                                  | 27, 28a/b, 29, 30, 40            | 3.95             | 86.19  |
| 27    | 4.08                                       | 66.11        | 26, 28b                             | 26, 28a/b, 29, 30, 31, 40, 41    | 4.10             | 65.99  |
| 28    | 0.93/1.36                                  | 36.55        | 27, 29                              | 26, 27, 29, 30                   | 0.95/1.37        | 36.56  |
| 29    | 1.86                                       | 32.16        | 30, 40, 28a                         | 26, 27, 28, 30, 31, 39           | 1.88             | 32.15  |
| 30    | 3.23                                       | 76.86        | 29, 31                              | 26, 27, 28, 29, 31, 33, 39, 40   | 3.26             | 76.65  |
| 31    | 1.82                                       | 28.64        | 39, 32a/b                           | 27, 29, 30, 39                   | 1.82             | 28.60  |
| 32    | 1.42/2.01                                  | 27.33        | 31, 33                              | 39                               | 1.39/1.99        | 27.32  |
| 33    | 1.39                                       | 30.95        | 32                                  | 30, 39                           | 1.29             | 30.56  |
| 34    | -                                          | 97.88        |                                     |                                  | -                | 97.29  |
| 35a/b | 1.25/1.97                                  | 46.18        | 36                                  | 36, 37a/b, 38                    | 1.43/1.62        | 36.85  |
| 36    | 4.02                                       | 64.91        | 35a,b; 37a,b                        | 35a/b, 37a/b, 38                 | 1.55/1.89        | 19.59  |
| 37a/b | 1.43/1.84                                  | 35.99        | 36, 38                              | 35a/b, 36, 38                    | 1.52             | 26.33  |
| 38    | 3.64                                       | 59.70        | 37a.b                               | 35a, 36, 37a/b                   | 3.52/3.71        | 61.20  |
| 39    | 0.94                                       | 10.98        | 31                                  | 29, 30, 31, 32, 33               | 0.93             | 10.89  |
| 40    | 0.99                                       | 16.45        | 29                                  | 26, 27, 30                       | 1.06             | 16.47  |
| 41    | 5.06/5.37                                  | 112.60       | 24                                  | 22, 23, 24, 27, 41               | 5.06/5.38        | 112.47 |
| 42    | 1.08                                       | 16.80        | 13                                  | 12, 13, 14, 15                   | 1.10             | 16.83  |
| 43    | 1.74                                       | 23.04        | 9                                   | 9,12                             | 3.99             | 65.65  |
| 44    | 1.32                                       | 27.94        |                                     | 4                                | 1.32             | 27.65  |

S6. Table of <sup>1</sup>H and <sup>13</sup>C chemical shifts for metabolites 1 and 2 and COSY and TOCSY correlations for metabolite 1.



S7. HRESIMS of metabolite 1



S8. HRESIMS of metabolite 2



S9. HRESIMS of metabolite 4