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The algorithm presented here, now called MOCA (Multivariate Organization of
Combinatorial Alterations), is an improvement on a method we developed for finding
correlated alterations in genomics data, including the ability to correlate genomic
alteration with phenotype (e.g., drug response or progression-free survival)(1). MOCA
has no built-in limitations on the number of data types it can handle in a single
execution, nor are there limits on the types of data (e.g., methylation, mutation, drug
response) MOCA can handle. Algorithmic flexibility with respect to data type is possible
because all data types are ultimately converted to binary representations (see below),
and therefore there are no restrictions concerning the comparison of continuous data
types (e.g., expression or methylation) with binary data types such as mutation.

MOCA takes, as input, feature-by-sample data matrices; for this study, features were
genes, tissues, or drugs, and samples were cell lines. For any data type that is not
binary, MOCA discretizes the data by converting every row to a feature-specific vector
of Z-scores, and applying a cutoff to define each element in that vector as altered or not;
in this study, a Z-score > 0.8 was used to define positive cases (overexpressed, drug
sensitive, etc.), and a Z-score < -0.8 was used to define negative cases (underexpressed,
copy number deleted, etc.).

Data:

For this work we utilized all data types available as part of the Cancer Cell Line
Encyclopedia (CCLE; http://www.broadinstitute.org/ccle/home), this included: 18,107
genes with expression data, 23,124 genes with CNA (copy-number alteration) data,
1,644 genes with mutation data, and 24 drugs with drug response data. There were 416
cell lines common to all data types, which were used in this study. Because MOCA
discretizes all continuous data types, there are twice as many features as there are
genes for CNA and expression data (e.g., one over- and one under-expression matrix).
We used mutation data with three distinct representations: 1) 1,644 gene-specific
mutations. 2) 51,829 mutation-specific mutation features (e.g., TP53 H193R is a unique
feature). 3) 346 drug-response-optimized mutation features (see below). The 416




cancer cell lines comprised 18 distinct tissues, which were also features in all
calculations. Thus, a total of 136,323 features were considered in this study. For all
calculations, except for creation of drug-response-optimized mutation features (see
below), feature vectors with fewer than three “true” (“1”) values were filtered; for
creation of drug-response-optimized mutation features this filter was not applied. Of
the formats available for the drug response data, we selected ICso values, which we
converted to —logio(ICso) values prior to calculation.

Calculations Performed by MOCA:
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Figure 1S: Example of P-Value, statistical sensitivity, and specificity calculations used
by MOCA.

Significance of drug-feature correlations is assessed by populating a two-by-two
contingency table with the binary drug and feature vectors and calculating Fisher’s
exact, two-tailed P-value. In the worked example (Figure 1S), a vector element of “1”
indicates either response to Drug, or alteration in genetic Feature;, for samples S;-Sio.
All P-values are corrected using the Benjamini and Hochberg false discovery rate (FDR).

Using the same two-by-two contingency table, MOCA computes the statistical sensitivity
and specificity of Feature; for response to Drugy (Figure 1S). For example, if a particular
sample S is sensitive to Drugy and altered in Feature;, that is considered a true positive
(TP). Similarly, the coincidence of response to Drug, and wild-type Feature; is a false
negative (FN). Samples not drug sensitive, but altered in the feature under comparison,
constitute a false positive (FP). And, samples not drug sensitive and not altered in the
feature under consideration represent a true negative (TN). From these values, MOCA
computes the statistical sensitivity (not to be confused with drug sensitivity) as TP/(TP +
FN) and the specificity as TN/(TN + FP).

Figure 2S is a worked example of how MOCA applies the union, intersection, and
difference Boolean set operations to combine multiple genomic features. The union
operation is equivalent to an or statement. An element in a binary feature vector
representing the union of Feature; and Feature; will be “1” if Feature; or Feature; are
altered in the corresponding sample, otherwise the element is “0” (Figure 2SA). The
intersection operation is equivalent to an and statement. An element in a binary



feature vector representing the intersection of Feature; and Feature; will be “1” if

Feature; and Feature; are altered in the corresponding sample, otherwise the element is
The difference operation is equivalent to a not statement.

“0” (Figure 2SB).

An

element in a binary feature vector representing the difference of Feature; and Feature;
will be “1” if Feature;, but not Feature; is altered in the corresponding sample;
otherwise, that element is “0” (Figure 2SC). There is no limit of the number of features
that can be combined into a single feature using any of these three operations.
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Figure 2S: Combining genomic features using the

Boolean set operations.
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Creation of Drug-Response-Optimized Mutation Features:

For a specific drug-gene combination, creation of a drug-response-optimized mutation
feature begins by taking a random collection of N mutation-specific mutation features
(Figure S3A). Each unique combination of these N mutation-specific mutation features
is combined into a distinct feature using the union operation (Figure S3B). Next, Fisher’s
exact P-value is calculated for the interaction of each one of these distinct features and
the corresponding drug (Figure S3C). This process, of taking N mutations and comparing
the union of all possible constituent combinations with drug response, is repeated T
times; every 10™ time, mutations belonging to the most significant 1% of combined
features were appended to the list of the mutation-specific mutation features (Figure
S3D). Therefore, as the algorithm progresses, the feature combinations become
increasingly optimized for correlation with drug response. Finally, all P-values are
converted to Benjamini & Hochberg FDRs, and the drug-response-optimized mutation
feature with the lowest FDR is used for subsequent MOCA calculations, provided that
FDR is < 0.05 (Figure S3E). If no drug-response-optimized mutation feature has an FDR <
0.05, that drug-gene combination is rejected entirely. For analysis purposes, we also
consider the frequency that each specific mutation occurs in the 100 most significant
optimized mutation features (see for instance, Figure 2A and 2B in the main
manuscript); we define these as the consensus mutations, throughout.

For this work, N was set to 10, resulting in 1,013 comparisons per random sampling (see
Figure 3S, Eq. 1). T scales proportional to the number of mutation-specific mutation
features (X) available for a specific gene, using the equation T = 10*(X — 10) for X < 110,
else T = 1000. This choice resulted in reasonable computational efficiency (see below)
and the ability to recover the same drug-response-optimized mutation features over
multiple trials (i.e., algorithmic convergence).

To filter genes that could be optimized below the FDR threshold by chance, a modified
version of the above-described process was initially performed on randomized drug
data. In Figure S3, T was set to 25, and every 5™ time mutations belonging to the most
significant 1% of combined features were appended to the list of the mutation-specific
mutation features. This permutation protocol was repeated 100 times for every drug-
gene combination; for each of these 100 trials, the drug under comparison was
permuted to a new configuration (Drugy in Figure S3). During the 100 permutation
trials, if any of the resulting drug-response-optimized mutation features achieved an
FDR < 0.05, that drug-gene combination was removed from the real (i.e., non-
randomized) data. This process was designed to be conservative, and of the potential
39,456 drug-response-optimized mutation features (i.e., 1,644 genes for each of 24
drugs), only 346 (< 1%) were significant and considered for subsequent analysis. The
entire process for creating drug-response-optimized mutation features took ~4.5 hours
per drug, on a single processor core. We include all 346 drug-response-optimized



mutation features and corresponding significance, statistical sensitivity, and specificity
in the accompanying supplemental data file.

Pairwise Calculations:

Next, we used MOCA to compute every pairwise drug-feature interaction. Of the
869,136 expression feature-drug interactions, 37,466 (4.0%) had an FDR < 0.05. Only
~0.03% (321) of the potential 1,109,952 CNA-drug correlations had an FDR < 0.05. Four
(0.01%) of the possible 39,456 interactions between gene-specific mutation features
and drug response were significant. Of the 1,243,896 interactions of drug response with
mutation-specific mutation features, only six (< 0.0005%) were significant. And, 7.2%
(31) of the potential 432 drug-tissue pairs were significantly correlated with drug
response. MOCA can compare ~2,000 interactions per, and a single processor core. The
accompanying supplemental data includes all significant pairwise interactions.

Target Selection:

Next, we selected a single target feature of drug response for each drug. A feature was
considered a target of drug response if it met the following two conditions: 1) the
feature is the target, or part of the pathway, that the drug was designed to inhibit. 2)
The feature was significantly correlated with response to that drug in the previous
pairwise comparisons. Three drugs were not considered for this step because data for
the target fusion gene was not publicly available at the time of this study. Of the
remaining 21 drugs, 11 drugs had targets that met conditions 1 and 2 (see Table S1).

Drug Target
AEW451 IGF1E%+
AZD6244 NRASOptMut
Erlotinib EGFRExp*
Lapatinib ERBB2Ex+
LBW242 NFKB20PtMut
Nutlin-3 MDM2Exp+
Panobinostat HDAC]0OptMut
PD-0325901 KRASOPtMut
PLX4720 BRAFV600E
RAF265 BRAFV600E
ZD-6474 EGFROptMut



Table S1: Target features for each of 11 drugs. Superscripts delineate the alteration
type used for the Target feature of response for the corresponding Drug (Exp+ is
overexpression, OptMut is a drug-response-optimized mutation feature (see above and
Figure S3), and V60OE is a specific BRAF amino-acid substitution).

Creation of Set Features:

Next, we used MOCA to make lists of features that, when combined with a target
feature using a set operation, increased the significance of the interaction by two orders
of magnitude, relative to the target alone. For instance, the erlotinib-EGFR™* (see
Table S1) interaction has a Fisher’s exact P-value of 3x10”. Therefore, if the interaction
of erlotinib with the union of EGFR®* and feature f had a P-Value < 3x10°, feature f was
added to the list of union features for the erlotinib-EGFR™* interaction. This process
was carried out for every feature for each interaction in Table 1S, considering the union,
intersection, and difference operation for every comparison. Importantly, this
calculation was not restricted to features determined significant in the previous pairwise
calculations; it is this choice that allowed our method to capture important interactions
that would be missed if pairwise significance was required to construct many-gene
features of drug sensitivity. This step took ~30 minutes for each of 24 drugs, on a single
processor core.
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Figure S4: Enriching the set-feature lists for features with the highest correlation with
drug response.



Then, we used an optimization protocol to enrich the set-feature lists created in the
previous step with features that, when combined, further improved correlation with
drug response. This process begins by selecting a random collection of N features from
one of three set-feature lists (i.e., union, intersection, or difference), for a particular
target-drug interaction (Figure S4A). Each unique combination of these features is
combined into a distinct feature using the set operation relevant to the set list being
enriched (Figure S4B). Next, each of these distinct features is combined with the target
feature using the relevant set operation (Figure S4C), and the Fisher’s exact P-value is
calculated for the interaction of that combined feature and the corresponding drug
(Figure S4D). This process, of taking N features, combining all possible feature
combinations with the target feature, and comparing the combined feature with drug
response is repeated T times; every 1000™ time, features belonging to the most
correlated 0.1% of combined features were appended to the corresponding set-
interaction list (Figure S4E). Therefore, as the algorithm progresses, a given set-
interaction list becomes increasingly populated with features that combine to optimize
correlation with drug response. For this work, T was set to 10,000 and N was 5,
resulting in 3.1x10° combinations tested, per set operation, per target feature-drug
interaction. Additionally, we enriched set-feature lists for features that contributed to
correlations with high statistical sensitivity, specificity, or the sum of both.

Creation of Optimized, Many-Gene Features:
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Figure S5: Combining the enriched set-feature lists into many-gene features highly
correlated with drug response.



Next, we create many-gene features by combining features from each enriched set-
feature list, for each target feature-drug interaction (Figure S5). First, MOCA selects a
random sample of N features from the enriched union-feature list (Figure S5A). Every
possible combination of these N features is combined using the union operation (Figure
S5B); one at a time, the target feature is added to one of these combined features, using
the union operation, and passed along to the next step (Figure S5C). Next, this process
is repeated for the intersection-feature list, and one at a time, the combined
intersection features are added to the previous union feature, using the intersection
operation, and passed along to the next loop of the algorithm (Figure S5D). Then, the
same process is repeated for the difference-feature list, and one at a time, the
combined difference features are added to the previous intersection feature, using the
difference operation (Figure S5E), and the P-value, statistical sensitivity, and specificity
of the resulting many-gene feature is calculated with respect the corresponding drug
(Figure S5F). Because the three lists (i.e., union, intersection, and difference) are
sampled within nested for loops, every possible combination of all selected features is
tested to find those with highest statistical sensitivity and specificity. For this study, N
was set to 5, 4, and 3 for sampling from the union, intersection, and difference lists,
respectively. Therefore, for each of 1,00 executions of T, 6,000 combinations were
tested, resulting in a total of ~6.0x10° many-gene features tested for each drug. As in
previous steps, all correlations were subject to multiple testing correction, and were
required to have an FDR < 0.05 for subsequent analysis (step not shown in Figure 5S).
See the last three rows of Table 1, in the main text, for an example of the output from
this protocol. The combined processes illustrated in Figure’s S4 and S5 took ~15
minutes, for each of 11 drugs, on a single processor core.

Finally, we assessed the potential utility of many-gene markers for blind prediction of
drug response. The 416 CCLE cell lines were randomly divided (using the python random
number generator) into training and testing datasets of 80% and 20%, respectively.
Testing and training datasets were visually inspected to assure each contained a
representative distribution of tissue types. First, training data was used to select single-
and multi-feature predictors of drug response using the training data. Features were
only selected for subsequent testing if their Benjamini and Hochberg FDR-corrected
Fisher’s P-value was less than 0.05. Many-gene features were derived as above, and it
was therefore additionally required that gene-target-drug interactions had P-values at
least two orders of magnitude more significant than the corresponding drug-target
interaction alone. Biomarkers selected during the training phase were then tested using
the testing data, and the resulting predictive value was ranked as the sum of statistical
sensitivity and specificity.

Other Details:
MOCA is written in python. Fisher’s exact test is computed using the fast fisher module

for python (v0.1.4; http://pypi.python.org/pypi/fisher/). Benjamini and Hochberg FDRs
are computed using the R p.adjust module, which interfaces with MOCA via RPy?2.




Structural models were rendered with PyMol (2). PDB accession codes for crystal
structures used in the structural models are as follows: 3BBT for lapatinib-bound ERBB4;
1XKK for lapatinib-bound EGFR; 1M17 for erlotinib-bound EGFR; 1RV1 for nutlin-2-
bound MDM2; 3V3B for p53-bound MDMZ2; 3FE7 for p53-bound MDM4. Heatmaps
were rendered using the heatmap2 module in R.

Calculations were performed either on a Dell workstation with a Quad-Core Xeon
processor or an IBM iDataPlex cluster with 500 Quad Core Intel Xeon E5472 processors
(2,000 processor cores).
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