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Existence of periodic solutions in response to periodic input

For the system of ODEs in Eq. 10 in the main text, reproduced here,

dZ

dt
= k(t)− δZ − β1Z (Xtot − C1 − C2 − C −X∗) + (β2 + k1)C1,

dC1

dt
= β1Z (Xtot − C1 − C2 − C −X∗)− (β2 + k1)C1,

dC2

dt
= α1X

∗ (Ytot − C2)− (α2 + k2)C2,

dX∗

dt
= k1C1 − α1X

∗ (Ytot − C2) + α2C2 − konX
∗ (ptot − C) + koff C,

dC

dt
= konX

∗ (ptot − C)− koff C.

(10)

there is always a periodic solution in response to any periodic input. Suppose
that k(t) is a continuous periodic signal with period T : k(t+ T ) = k(t) for
all t ≥ 0, and let K be the largest value of k(t). Then, the set S consisting
of vectors (Z,C1, C2, X

∗, C) with non-negative components for which

Z ≤ (1/δ)(K+(β2 +k1)Xtot), X
∗+C1 +C2 +C ≤ Xtot, C2 ≤ Ytot, C ≤ ptot,

is forward invariant: any solution that starts in the set S at time t = 0 stays
in S for all t > 0. Moreover, this set is compact (closed and bounded) and
convex.

Consider the mapping π : S → S with π(ξ0) = ξ(T ), that is, the map
that assigns to any initial state ξ0 at time t = 0 the solution of Eq. 10 at
time t = T . Since π is a continuous mapping, it follows as a consequence
of Brouwer’s Fixed-Point Theorem (1) that there exists at least one state
ξ0 for which π(ξ0) = ξ0. Periodicity of k(t) then implies that the solution
ξ(t) starting from ξ(0) = ξ0 is periodic with period T . Moreover, unless
the input signal k(t) is itself constant, the solution ξ(t) is a true periodic
solution (not a constant steady state), since dZ/dt = 0 for a constant Z(t)
would imply that k(t) is equal to a constant.

Linear stability of solutions near equilibrium points

Here we show that, under very general physical assumptions, the solution
of Eq. 10 is linearly stable around an equilibrium point, by proving that
all eigenvalues of the Jacobian have negative real parts. For simplicity, we



Energy costs of insulators in biochemical networks 2

consider the system of equations with W = Z + C1 and V = X∗ + C2 + C,
given by

dW

dt
= k(t)− δ(W − C1),

dC1

dt
= β1 (W − C1) (Xtot − V − C1)− (β2 + k1)C1,

dC2

dt
= α1 (V − C2 − C) (Ytot − C2)− (α2 + k2)C2,

dC

dt
= kon(V − C2 − C) (ptot − C)− koff C

dV

dt
= k1C1 − k2C2.

(S1)

Here we initially take k(t) = k to be constant. In the following analysis, it
will be helpful to write expressions in terms of

∆1 = β1(W − C1),

∆2 = β1(Xtot − V − C1),

∆3 = α2 + α1(V − C2 − C),

∆4 = α1(Ytot − C2),

∆5 = koff + kon(V − C2 − C),

∆6 = kon(ptot − C).

(S2)

All these quantities are evaluated at a positive equilibrium (W̄ , C̄1, C̄2, C̄, V̄ ).
We will assume that all rate constants, such as β1, β2, and so forth, are
strictly positive, as are the equilibrium concentrations for physically relevant
solutions of Eq. 10. Note that under these assumptions all of the quantities
listed in Eq. S2 will be strictly positive.

In terms of these variables, the Jacobian corresponding to Eq. 10 is

J =


−δ δ 0 0 0
∆2 −k1 − β2 −∆1 −∆2 0 0 −∆1

0 0 −k2 −∆3 −∆4 −∆4 ∆4

0 0 −∆6 −∆5 −∆6 ∆6

0 k1 −k2 0 0

 .

All eigenvalues of the Jacobian will have negative real part provided that
the Routh-Hurwitz stability criterion (2) is satisfied. The stability criterion
consists of a set of conditions on the coefficients of the characteristic poly-
nomial P (λ) = λ5 + a1λ

4 + a2λ
3 + a3λ

2 + a4λ+ a5 of the Jacobian matrix.



Energy costs of insulators in biochemical networks 3

For our system these conditions take the form

a1, a2, a3, a4, a5 > 0, (S3)

a1a2a3 − a2
3 − a2

1a4 > 0, (S4)

(a1a4 − a5)(a1a2a3 − a2
3 − a2

1a4)− a5(a1a2 − a3)2 − a1a
2
5 > 0. (S5)

A simple expansion of the coefficients of the characteristic polynomial, writ-
ten in terms of the variables introduced in Eq. S2, shows that the conditions
given by Eq. S3 and Eq. S4 are satisfied for any physical choice of parame-
ters, as defined above. The left-hand side of Eq. S5 can be written in terms
of the variables in Eq. S2 as well as the rate constants k1, k2, β2, and δ,
but this expansion includes both positive and negative terms, and it is not
immediately clear that the inequality always holds. We note that the actual
expressions for Eq. S3, Eq. S4, and Eq. S5 written out in full are long and
unenlightening, thus we omit them here.

There are two separate physical limits in which we can show that Eq. S5
is satisfied: when the production rate k and degradation rate δ of Z are
small, and when the catalytic rates k1 and k2 for the phosphorylation and
dephosphorylation reactions are large. We emphasize that both of these lim-
its, individually, reflect conditions that we expect to be satisfied generically
in the biochemical systems that we are modeling, as noted in Section 1 of
the main paper.

To prove linear stability in the first case, we first observe that all of
the negative terms in the expansion of the LHS of Eq. S5 are multiplied by
factors of δ, whereas some of the positive terms are not. Each rate constant
appears as an independent parameter, and the equilibrium concentrations
appearing in Eq. S2 only depend upon the parameters k, δ through the
ratio k/δ, which sets the equilibrium value of Z, Z̄ = β1k/δ. Thus for
every choice of the rate constants α1, α2, β1, β2, k1, k2, kon, and koff , and the
equilibrium concentration Z̄, there exists some δ0 > 0 such that for all δ
with δ0 > δ > 0, and with k chosen such that β1k/δ = Z̄, the negative
terms in the expansion of Eq. S5 are small enough, compared to the positive
terms, that the inequality is satisfied. This proves the linear stability of such
an equilibrium solution of Eq. 10 for all positive δ < δ0 with k = Z̄δ/β1.

For the second case, we note that the positive terms in the expansion of
Eq. S5 include terms with higher powers of k1 and k2 than in the negative
terms. Holding all other rate constants fixed, we note that as k1 and k2

are varied the equilibrium concentrations are bounded and positive. Thus
for large enough k1 and k2, the positive terms in the expansion of Eq. S5
dominate the negative terms, and the inequality is satisfied.
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We can extend these results for the linear stability of equilibrium solu-
tions of Eq. 10 with constant input to the case where k(t) is time-varying
using the following theorem (a special case of Theorem 10.3 in (3)): Consider
the forced system of differential equations, written in vector form,

dx

dt
= f(x) + κ(t) (S6)

with f = (f1, . . . , fn) a continuously differentiable vector field, κ(t) = ū +
εu(t), where ū is a constant vector in Rn and u(t) is continuous and T -
periodic: u(t + T ) = u(t) for all t ≥ 0. Let x̄ denote a steady state for
the forced system when ε = 0, that is, f(x̄) + ū = 0, and assume that all
the eigenvalues of the Jacobian matrix J = ∂f/∂x|x=x̄ have negative real
part. Then, for each small enough ε > 0, there exists a solution x(t) of
Eq. S6 which is T -periodic, with x(0) close to x̄. Moreover, this solution
is asymptotically stable: it attracts all close-by solutions, and solutions
starting near x(0) stay uniformly close to x(t) for all times.

In our case the vectors are five-dimensional, with x = (W,C1, C2, C, V ),
f given by the vector of derivatives of Eq. S1, and κ(t) = (k(t), 0, 0, 0, 0).
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