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1. The Effect of Dictionary Resolution on MRF Performance 

Since a larger or finer-resolved dictionary in general requires a longer computation time, the 

effects of the dictionary resolution on the accuracy of T1 and T2 were estimated in the phantom 

study as shown in Supplementary Figure 1. The MRF results shown in Figure 5 were estimated 

using the dictionary with 20 ms step size for T1 values from 20 to 2000 ms, and 5 ms step size 

for T2 values from 20 to 300 ms. Based on the values of T1 and T2 shown in Figure 5, a finer 

dictionary with only 1 ms step size was generated targeted on each of the phantoms. The finer 

resolution dictionary included the range of values within a T1 range of ±50 ms and a T2 range of 

±20 ms from the original results. (Performing such a calculation over the full range of values 

would be computationally impractical with our current setup.) Means and standard deviations of 

each phantom using the dictionaries with different resolutions were compared. As can be seen 

below, the mean values remained unchanged. However, the standard deviation across the 

pixels of the phantom decreased as the dictionary step size became smaller. This can be 

intuitively understood by examining an example situation where a pixel contains a material that 

sits directly between two dictionary entries. In this case, any added noise will cause the selected 

dictionary entry to switch between the dictionary entries on either side of the true value. The 

further apart these dictionary entries are, the worse the apparent error is. Thus a finer resolved 

dictionary can potentially provide higher quality results at the expense of increased computation 

time. 



 

Supplemental Figure 1: The effects of dictionary resolution on the accuracy of T1 and T2.  

a) T1 values retrieved from the dictionary with 20ms step size were compared with the values 

from the dictionary with 1ms step size.  b) T2 values retrieved from the dictionary with 5ms step 

size were compared with the values from the dictionary with 1ms step size. c) The standard 

deviation of T1 values retrieved from the dictionary with 20 ms step size were compared with the 

values from the dictionary with 1 ms step size.  d) The standard deviation of T2 values retrieved 

from the dictionary with 5 ms step size were compared with the values from the dictionary with 1 

ms step size.   

 

 

 

 



2. Effects of Severe Off-Resonance on MRF and DESPOT2 Acquisitions 

     The bSSFP based sequence is known to be sensitive to field inhomogeneities, where the 

resonance frequency is different from the frequency of exciting RF field. This off-resonance 

effects will cause signal voids at the phase evolution of π or multiples of π per TR1. In order to 

show the impact of this effect on a conventional acquisition, an in vivo accelerated MRF scan 

(using the sequence pattern as shown in Figure 1d), and the combined DESPOT1 and 

DESPOT2 (acquisition parameters are provided from Deoni et al2) was performed in a lower part 

of the brain, near the air-tissue interfaces in the frontal lobe region, that well known to display 

large off-resonances. The TR of the bSSFP sequence for DESPOT2 was changed to be the 

same as the TR of MRF, which is 10.8 ms). As shown in Supplementary Figure 2b, the T2 map 

from DESPOT2 has signal voids in the frontal lobe region, while this off-resonance effect is not 

shown in the MRF T2 map in Supplementary Figure 2d. The off-resonance map from MRF in 

Supplementary Figure 2e shows the high off-resonance values in the corresponding area as 

indicated by arrows.      

 



 

Supplementary Figure 2: Correction of Severe off-resonance Effects from bSSFP based 

Sequence. (a) and (b) show the T1 and T2 maps acquired from DESPOT1 and DESPOT2 

methods, respectively. Arrows indicate areas of signal voids due to the off-resonance effect. (c-e) 

show the T1, T2 and off-resonance maps acquired from MRF method. T2 map in (d) does not 

have signal voids because the off-resonance effect has been considered in the off-resonance 

map shown in (e) by arrows.   

 

 

 

 

 

 

 

 

 



3. The Potential of MRF to Resolve Multiple Components from Single Voxels 

Most conventional quantitative imaging methods assume that each voxel contains a pure, 

single material. One issue that is common to many quantitative imaging methods is how to deal 

with voxels with mixed content. This general class of problems is referred to as "partial volume". 

If there is a mixture of materials in a single voxel, one typically observes a single component with 

the volume-weighted average T1, T2, etc. Several investigators have also used multiexponential 

fitting to attempt to derive separate components of a voxel3–6. However, these methods are 

highly unstable and sensitive to noise. One of the fundamental bases for this problem is that the 

different signal evolutions for the different components of the voxel fundamentally "look" the 

same (e.g. exponential decays) and thus they are difficult to separate.  

MRF provides new opportunities to analyze partial volume results because of the 

incoherence between different signal evolutions. In general, the goal of MRF is to design a pulse 

sequence that generates signal evolutions that are as independent as possible. In an ideal case, 

the signal evolutions from the different components of a voxel would be orthogonal, which would 

make them trivial to separate. However, in general there will be some correlation between the 

different materials, and thus some other method must be used. To this end, one could perform 

OMP and derive multiple components from each pixel. Alternatively, this could be formulated as 

a L1-minimization commonly found in the compressed sensing literature7. Bayesian estimation 

methods are also well suited8. Or finally, one could use a neural network based pattern matching 

algorithm which could output the probability of each material type9 . However, in all of these 

cases, the maps for the 2nd component (and higher) are noisy and difficult to interpret, since 

there is only signal in those voxels that are strongly inhomogeneous.  

Here we present an alternative formulation that is both easy to understand and easy to 

visualize. If we are working in a system where the major substances of interest are known a 

priori, one can ask "how much of each substance is in each voxel?", since the target signal 



evolutions are completely known. In this case, we can model the signal from a single voxel (Svoxel) 

as a linear superposition of the known components: 

voxel i i
i

S w=∑ D

w

                  [S.3.1]
 

where Di is the signal evolution for material i as calculated directly from Bloch equations or 

extracted from a dictionary, and wi is the unknown weight for the individual components. This 

can be written in matrix form 

voxelS D=
         [S.3.2]

 

This can then be solved though an appropriate inverse solution to solve for the individual 

component weights, such as: 

1( )H H
voxelD D D S w− =

       [S.3.3]
 

where a superscript H represents the Hermetian adjoint or complex transpose operator. The 

weights are then normalized such that the sum of the weights has unit magnitude. 

Here we have generated fractional maps in the brain assuming that the primary tissues are 

white matter, gray matter and CSF as derived directly from the highly undersampled MRF data 

set shown in Figure 3. The images were interpolated to 256x256 prior to this analysis using 

straightforward Fourier interpolation. At each voxel, the off-resonance value was determined 

using the standard MRF method. Based on this value, the individual signal evolutions were 

derived assuming the following values for T1 and T2: white matter (T1=660 ms, T2=70), gray 

matter (T1=1200 ms, T2=90 ms) and CSF (T1=5000 ms, T2=700 ms). The resulting maps 

derived from the direct application of equation S.3.3 are shown in Supplemental Figure 3. The 

maps show the expected distribution of the various tissue types throughout the brain. This is 



particularly evident in the visualization of the deep nuclei in the brain. One can see that the 

putamen (yellow arrows) displays a reduced, but non-zero, white matter fraction and a large gray 

matter fraction. The thalamus (red arrows) also shows a significant fraction of gray matter. Areas 

of partial volume in and around the sulci also appear as expected. CSF is incorrectly visualized 

in both of the other maps to a certain extent. Our hypothesis is that this is due to CSF pulsation, 

which is not taken into account in our current model.  

While probabilistic image segmentation such as this can be performed using other methods 

based on multiple image acquisitions, we believe that this is the first method that is able to 

translate raw signals directly to quantitative material fractions. In medical applications, we 

believe that this visualization might be useful whenever one can identify MRF signatures that are 

specific for certain disease states. One could generate images that directly predict the probability 

of finding a certain disease state within any given voxel, even when the volume of the affected 

tissue is less than a single voxel. This could lead to a dramatic paradigm shift in the way clinical 

MRI is performed. 

 

Supplemental Figure 3: Fractional tissue maps for A) white matter B) gray matter and C) CSF. 

The intensity of each pixel in these maps represents the fraction of that tissue in that voxel. The 

putamen (yellow arrow) shows the anticipated reduced white matter fraction, with a large gray 

matter fraction. The thalamus (red arrow) shows a similar trend, as expected. 



 

4. Simplified Matlab Code for Calculation of MRF Dictionaries and Template Matching 

function dict=makeMRFdictionary(RFpulses ,TR ,T1, T2, df);   
%  
% This function calculates the MRF signal evolution for an IR-bSSFP-based readout 
% for a single material (T1, T2, df) for the input RF pulse train and TR.  
% 
% This code is based on the single isochromat method popularized by Klaus 
% Scheffler. This works for bSSFP as long as one can assume that both the 
% flip angle and off-resonance frequency are essentially homogeneous inside 
% a voxel. 
%  
%         INPUTS:          
%                     RFpulses        Complex RF pulse train  
%                                         (1 x #timepoints) 
% 
%                     TR              TR  (1 x #timepoints) 
% 
%                     T1, T2, df      T1, T2, and off-resonance frequency 
% 
%                                     Make sure these are all in the same 
%                                     time units! 
% 
%         OUTPUTS: 
% 
%                     dict            Calculated dictionary  
% 
% 
%   Nov. 15, 2012   Dan Ma, Mark Griswold 
% 
% 
 
if nargin<5 
    df=0; 
end 
 
if nargin<4 
    T2=50; 
end 
 
if nargin<3 
    T1=1000; 
end 
 
if nargin<2 
    TR=rand(1,1000)*4+10; 
end 
 
if nargin<1 
    RFpulses=10*pi./180*randn(1,1000); 
end 
 
N=length(TR); 
 
rf=abs(RFpulses); 
rph=angle(RFpulses); 
 
dict=zeros(1,N); 
 
 m1=[0 0 -1].';    % This assumes a perfect inversion pulse with no delay 



 
 for i=1:N 
 
     rx=    [   1.0 0.0 0.0;        %rotation matrix for pulse 
                0.0 cos(rf(i)) sin(rf(i));  
                0.0 -sin(rf(i)) cos(rf(i))]; 
 
     rdzp=  [   cos(rph(i)) sin(rph(i)) 0.0; %RF phase 
                -sin(rph(i)) cos(rph(i)) 0.0;  
                0.0 0.0 1.0]; 
 
     rdzm=  [   cos(-rph(i)) sin(-rph(i)) 0.0;  
                -sin(-rph(i)) cos(-rph(i)) 0.0;  
                0.0 0.0 1.0]; 
 
     e1=exp(-TR(i)./T1);        % relaxation terms 
     e2=exp(-TR(i)./T2); 
 
 
     beta=df.*TR(i)*2*pi; 
 
     rbeta= [   cos(beta./2) sin(beta./2) 0.0; % 1/2 off-resonance rotation 
                -sin(beta./2) cos(beta./2) 0.0;  
                0.0 0.0 1.0]; 
 
 
 
     e12=   [   e2 0.0 0.0; 
                0.0 e2 0.0;  
                0.0 0.0 e1]; 
 
 
 
     m1=rdzp*rx*rdzm*m1;    % do RF pulse 
 
     m1=(e12*m1+(1-e1)*[0 0 1].');  %relax 
 
     m1=rbeta*m1;   % Off-resonance for first 1/2 of TR 
 
     dict(i)=m1(1)+j.*m1(2);  %Sample assuming TE=TR/2 
 
 
     m1=rbeta*m1;  % Off-resonance for 2nd 1/2 of TR 
 end 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



function matchout=templatematch(dict,sig); 
% 
% This function calculates a template match for use in MR Fingerprinting  
% applications. Here this is calculated using a simple dot-product. The 
% output is the index of the most likely dictionary entry for each pixel. 
% 
%       INPUTS:         dict        (# entries, timepoints) 
%                       sig         (timepoints, #pixels) 
% 
%       OUTPUTS:        matchout    (1, #pixels) 
% 
% Please note that this code requires the generation of an intermediate 
% matrix of size (#entries, #pixels), which can be quite large. If this is 
% beyond the memory capability of your computer, simply parse the data into 
% smaller sets of pixels and calculate them serially. 
% 
%   Nov. 15, 2012   Dan Ma, Mark Griswold 
%   
 
 
if nargin<2 
    disp('Error - 2 inputs are required!'); 
    break 
end 
 
% First normalize the dictionary and signal 
 
for i=1:size(dict(:,:),2) 
    dict(:,i)=dict(:,i)./norm(dict(:,i)); 
end 
 
for i=1:size(sig(:,:),2) 
    sig(:,i)=sig(:,i)./norm(sig(:,i)); 
end 
 
% Calculate inner product 
 
innerproduct=dict(:,:)*sig(:,:); 
 
% Take the maximum value and return the index 
[maxval,matchout]=max(abs(innerproduct)); 
 



5. Captions for Supplemental Movies 

 

Supplementary Movie 1:  

This movie shows the time resolved in vivo images acquired from fully sampled MRF scan. The 

movie covers the first 50 time frames. Oscillations in signal intensity appear across all of the time 

frames. (MPG animation: 980 KB) 

 

Supplementary Movie 2:  

This movie shows the time resolved in vivo images generated from an accelerated MRF scan 

that acquired only 1/48th of the normally required data. The movie covers the first 50 time frames 

out of 1000. High intensity but incoherent undersampling errors are present in all time frames. 

(MPG animation: 1.5 MB) 

 

Supplementary Movie 3:  

This movie shows the motion corrupted scan. The subject started to move after 12 seconds of a 

15 seconds acquisition. The movie clearly shows the motion as well as severe aliasing artifacts 

from the highly undersampled data.  (MPG animation: 1.5 MB) 
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