Fig. S1. ACY-738 and Tubastatin are HDAC6 inhibitors. This experiment compares HDAC6 specific augmentation of suppressive Treg function by both HDAC6 inhibitors. Treg suppression assays with (top panels) wild type (WT) and (lower panels) HDAC6^{-/-} Tregs were performed with the indicated concentrations of inhibitors. All assays were performed with APCs and effector T cells (TE) from HDAC6^{-/-} mice to exclude confounding effects of HDAC6 inhibitor treatment by these HDAC6 specific inhibitors. Data representative of two independent experiments.

Fig. S2. Immunofluorescence of Tregs to assess the cytosolic and nuclear localization of transcription factors controlling Foxp3 expression. Scale bar: $10 \mu m$.

Fig. S3. Western blotting analysis of Treg lysates to compare Foxp3 transcription factors. Smad, SMA and Mothers against decapentaplegic homolog-3; CREB, cAMP response element-binding. Data representative of three independent experiments.

Fig. S4. Loss of Sirt1 does not affect conversion to iTregs. (**A**) Cumulative results from flow cytometric analysis of the induction of Foxp3 protein in wild-type (WT) and fl-Sirt1/CD4cre effector T cells treated for 4 to 5 days with TGF- β (2 to 3 ng/ml) and IL-2 (25 U/ml). Data pooled from 15 independent experiments. (**B**) CD8⁺ effector T cells from fl-Sirt1/CD4cre mice were converted to iTregs at the same rate as were WT CD8⁺ T cells. Experiment done in triplicate. (**C**) Baseline extent of Foxp3⁺ staining in cell from mesenteric lymph nodes is equivalent between WT and Sirt1-deficient mice. Data pooled from three independent experiments.

Fig. S5. Loss of HDAC9 does not alter TSDR methylation. Pyrosequencing of six CpG methylation sites from the TSDR of effector T cells from the indicated mice. Data are from two independent experiments.

Fig. S6. Purity control of the effector T cells used for the pyrosequencing methylation assay (fig. S5). Almost all of the cells are negative for CD25 and Foxp3, indicating adequate purity of effector T cells for methylation analysis.

CD4

Fig. S7. Combined deletion of Sirt1 and HDAC9 produces minor improvements in Treg function. Tregs lacking HDAC9 or Sirt1 (colored panel, bottom row) are more potent than WT Tregs (bottom panel) at suppressing the proliferation of effector T cells. Inhibition of HDAC6 with ACY-738 (1 μ M) improved Treg function in cells of either genotype. However, inhibition of Sirt1 with EX-527 (5 μ M) had only a minimal additive benefit for HDAC9^{-/-} Tregs (upper panel). Data representative of three independent experiments.

Fig. S8. Targeting of three HDACs does not improve Treg function any more than does use of dual HDACi. HDAC9^{-/-} Tregs treated with ACY-738 (1 μ M) and EX-527 (5 μ M) did not exhibit any improvement in function than did WT Tregs treated with both HDAC inhibitors. Data representative of two independent experiments.

Fig. S9. Proliferation of effector T cells is not affected by HDAC inhibitors. Effector T cells (TE) injected into the $B6/Rag1^{-/-}$ mice from the homeostatic proliferation experiment in Fig. 5 showed no differences in Ki67 when treated with HDAC inhibitors or control (DMSO).

Ki67+ induction in injected TE

Fig. S10. Examples of image processing. (A) Raw immunofluorescence images obtained at $100\times$ were processed with auto-contrast, merged, and then cropped. (B) Western blotting films were scanned or photographed, depending on the degree of background staining, and then were processed with auto-contrast and appropriate cropping.

value; Sig., statistical significance; C	I, confidence in	iterval; ns	s, not s	ignificantly different.
Tukey's Multiple Comparison	Mean Diff.	q	Sig.	95% CI of diff
Test				
WT_Control vs WT_ACY738	-0.6534	10.68	***	-0.9530 to -0.3537
WT_Control vs HS_WT_Control	0.2947	4.816	ns	-0.004942 to
				0.5943
WT_Control vs HS_WT_ACY738	-0.3871	6.326	**	-0.6867 to -
				0.08745
WT_Control vs HSP70_Control	0.2776	4.538	ns	-0.02198 to 0.5773
WT_Control vs HSP70_ACY738	-0.07723	1.262	ns	-0.3769 to 0.2224
WT Control vs	0.3778	6.175	**	0.07818 to 0.6774
HS HSP70 Control				
WT Control vs	0.1216	1.987	ns	-0.1781 to 0.4212
HS HSP70 ACY738				
WT_ACY738 vs HS_WT_Control	0.9480	15.49	***	0.6484 to 1.248
WT_ACY738 vs HS_WT_ACY738	0.2663	4.352	ns	-0.03334 to 0.5659
WT ACY738 vs HSP70 Control	0.9310	15.22	***	0.6314 to 1.231
WT_ACY738 vs HSP70_ACY738	0.5761	9.416	***	0.2765 to 0.8757
WT_ACY738 vs	1.031	16.85	***	0.7315 to 1.331
HS_HSP70_Control				
WT_ACY738 vs	0.7749	12.67	***	0.4753 to 1.075
HS_HSP70_ACY738				
HS_WT_Control vs	-0.6817	11.14	***	-0.9814 to -0.3821
HS_WT_ACY738				
HS_WT_Control vs	-0.01704	0.2785	ns	-0.3167 to 0.2826
HSP70_Control				
HS_WT_Control vs	-0.3719	6.079	*	-0.6715 to -
HSP70_ACY738				0.07229
HS_WT_Control vs	0.08312	1.359	ns	-0.2165 to 0.3827
HS_HSP70_Control				
HS_WT_Control vs	-0.1731	2.830	ns	-0.4727 to 0.1265
HS_HSP70_ACY738				
HS WT ACY738 vs	0.6647	10.86	***	0.3651 to 0.9643
HSP70 Control				
HS WT ACY738 vs	0.3098	5.064	*	0.01021 to 0.6095
HSP70 ACY738				
HS_WT_ACY738 vs	0.7649	12.50	***	0.4653 to 1.064
HS_HSP70_Control				
HS_WT_ACY738 vs	0.5086	8.313	***	0.2090 to 0.8082
HS_HSP70_ACY738				
HSP70_Control vs	-0.3549	5.800	*	-0.6545 to -

Table S1. Statistical analysis for Fig. 1C. Results of one-way ANOVA with Tukey's multiple comparison test. *P < 0.05, **P < 0.01, ***P < 0.001. Diff, difference. q, q-value; Sig., statistical significance; CI, confidence interval; ns, not significantly different.

HSP70_ACY738					0.05525
HSP70_Control	VS	0.1002	1.637	ns	-0.1995 to 0.3998
HS_HSP70_Control					
HSP70_Control	VS	-0.1561	2.551	ns	-0.4557 to 0.1435
HS_HSP70_ACY738					
HSP70_ACY738	VS	0.4550	7.437	**	0.1554 to 0.7547
HS_HSP70_Control					
HSP70_ACY738	VS	0.1988	3.249	ns	-0.1008 to 0.4984
HS_HSP70_ACY738					
HS_HSP70_Control	VS	-0.2563	4.188	ns	-0.5559 to 0.04337
HS HSP70 ACY738					

value, big., statistical significance, e	i, comfuence mich val, no		, not s	ignificantly annoicint.		
Tukey's Multiple Comparison Test	Mean Diff.	q	Sig.	95% CI of diff		
WT Control vs WT EX527	-0.2114	4.732	*	-0.4207 to -		
				0.002137		
WT Control vs HS WT Control	0.1130	2.529	ns	-0.09628 to 0.3222		
WT Control vs HS WT EX527	-0.1492	3.339	ns	-0.3584 to 0.06009		
WT Control vs HSP70 Control	0.2518	5.637	*	0.04259 to 0.4611		
WT Control vs HSP70 EX527	0.09279	2.077	ns	-0.1165 to 0.3020		
WT Control vs	0.3603	8.065	***	0.1511 to 0.5696		
HS HSP70 Control						
WT Control vs HS HSP70 EX527	0.07240	1.621	ns	-0.1369 to 0.2817		
WT EX527 vs HS WT Control	0.3244	7.261	***	0.1151 to 0.5336		
WT EX527 vs HS WT EX527	0.06223	1.393	ns	-0.1470 to 0.2715		
WT EX527 vs HSP70 Control	0.4632	10.37	***	0.2540 to 0.6725		
WT EX527 vs HSP70 EX527	0.3042	6.809	**	0.09492 to 0.5134		
WT EX527 vs HS HSP70 Control	0.5717	12.80	***	0.3625 to 0.7810		
WT EX527 vs HS HSP70 EX527	0.2838	6.352	**	0.07454 to 0.4931		
HS WT Control vs	-0.2621	5.868	**	-0.4714 to -		
HS WT EX527				0.05288		
HS WT Control vs	0.1389	3.108	ns	-0.07039 to 0.3481		
HSP70 Control						
HS WT Control vs HSP70 EX527	-0.02019	0.4520	ns	-0.2295 to 0.1891		
HS WT Control vs	0.2473	5.537	*	0.03809 to 0.4566		
HS_HSP70_Control						
HS_WT_Control vs	-0.04058	0.9083	ns	-0.2498 to 0.1687		
HS_HSP70_EX527						
HS_WT_EX527 vs HSP70_Control	0.4010	8.976	***	0.1918 to 0.6103		
HS_WT_EX527 vs HSP70_EX527	0.2419	5.416	*	0.03269 to 0.4512		
HS_WT_EX527 vs	0.5095	11.40	***	0.3002 to 0.7187		
HS_HSP70_Control						
HS_WT_EX527 vs	0.2216	4.959	*	0.01231 to 0.4308		
HS_HSP70_EX527						
HSP70_Control vs HSP70_EX527	-0.1591	3.560	ns	-0.3683 to 0.05019		
HSP70_Control vs	0.1085	2.428	ns	-0.1008 to 0.3177		
HS_HSP70_Control						
HSP70_Control vs	-0.1794	4.017	ns	-0.3887 to 0.02981		
HS_HSP70_EX527						
HSP70_EX527 vs	0.2675	5.989	**	0.05828 to 0.4768		
HS_HSP70_Control						
HSP70 EX527 vs	-0.02039	0.4563	ns	-0.2296 to 0.1889		

Table S2. Statistical analysis for Fig. 1G. Results of one-way ANOVA with Tukey's multiple comparison test. *P < 0.05, **P < 0.01, ***P < 0.001. Diff, difference. q, q-value; Sig., statistical significance; CI, confidence interval; ns, not significantly different.

HS_HSP70_EX527							
HS_HSP70_Control	VS	-0.2879	6.445	**	-0.4972	to	-
HS_HSP70_EX527					0.07866		