
Supplementary Material

Effect of Network Density on x

The main text discusses the effect of network size on the
form of the x curve. Similar simulations were performed to
examine the effects of varying the network density. To this
end, four 1000-node regular lattice networks were simulated
at varying densities (density = 1%, 5%, 10%, and 20%). Each
network was rewired at random according to the Watts and
Strogatz rewiring regime (Watts and Strogatz 1998). The
resulting clustering coefficient, path length, and x values
are shown versus each corresponding rewire probability
(Fig. S1).

In general, as the density of a network increases, the nodes
of the network become more connected. Therefore the aver-
age path length in dense networks is generally shorter.
Thus, the maximum improvement in path length due to ran-
dom rewiring becomes limited for these dense networks, and
x of the lattice network cannot achieve very negative values.
This explains the curve seen in Figure 2 for a network size of
100, where the lower tail of the omega curve does not achieve
�1. This small network has an average degree of 16 and there-
fore a density of approximately 32%.

Real-World Networks

Small-world properties were investigated in 10 networks
found in the literature and various databases. These networks
include various biological, social, and technological net-
works. As seen in Table S1, the small-world coefficient, r, in-
dicates that most of these networks are small-world. In
contrast, by using x, the classification of some of these
networks as small-world comes into question. Moreover, x
allows for ranking of these networks on a continuum between
lattice and random. As shown in Figure 5B, r does not char-
acterize clustering in networks and is greatly influenced by
clustering in the random network. These results parallel the
results found in brain network data (Fig. 5A).

Network Latticization

Lattice networks were generated by using a modified ver-
sion of the Sporns–Zwi ‘‘latticization’’ algorithm (Sporns
and Zwi, 2004) found in the brain connectivity toolbox
(www.brain-connectivity-toolbox.net) (Rubinov and Sporns
2010). The procedure is based on a Markov-chain algorithm
that maintains node degree and swaps edges with uniform
probability; however, swaps are carried out only if the result-
ing matrix has entries that are closer to the main diagonal. The
algorithm requires two inputs: the adjacency matrix of the
network and the number of iterations (i.e., the number of
times each node is rewired on average). Using the algorithm
in its present form generates a network that places most of
the nodes along the main diagonal of the matrix. However,
because this algorithm is based on random swaps, the cluster-
ing in the network is not necessarily maximized. Increasing
the number of iterations may increase clustering, but this
often comes at the cost of increased processing time. Although
this algorithm works well with smaller networks, it becomes
computationally burdensome with larger networks such as
the Internet, which takes several hours to process.

To address these issues, a new latticization algorithm was
developed that slightly modifies the Sporns–Zwi algorithm.
The latticization algorithm used in this study uses a two-step
procedure to produce a lattice network with optimized cluster-
ing (Fig. S3). The first step simply uses the Sporns–Zwi algo-
rithm with five iterations on the original adjacency and
produces an input matrix, Aij(in) (i.e., the matrix that is used
by the clustering optimization algorithm). Five iterations are
used because it appears to strike a balance between processing
time and networks with most nodes along the main diagonal.
The second step uses the input matrix, Aij(in), and a user-de-
fined number of repetitions, R, to ultimately generate a lattice
network, Aij(latt). The clustering optimization algorithm uses
the Sporns–Zwi algorithm, but uses one iteration, to produce
an output matrix, Aij(opt). Following this procedure, the clus-
tering of Aij(opt) is compared to Aij(in). If Aij(opt) has higher
clustering, it replaces Aij(in) as the new input matrix. If Aij(opt)
has lower clustering, then Aij(in) is kept as the input matrix. By
using the old or new input matrix, the clustering optimization
procedure is performed until the number of user-defined rep-
etitions is fulfilled. The resultant matrix, Aij(latt), is a lattice net-
work with optimized clustering. This latticization algorithm is
useful for small and mid-sized networks because it ensures
highly clustered networks. Furthermore, this algorithm takes
less processing time than simply increasing the number of iter-
ations in the Sporns–Zwi algorithm, which does not necessar-
ily produce optimized clustering.

As mentioned earlier, larger networks become a computa-
tional burden for the Sporns–Zwi algorithm as well as for the
latticization algorithm used in this study. To address this, an
alternative method was developed for larger networks such
as the Internet or voxel-based functional brain networks.
Instead of using the latticization algorithm on the entire net-
work, the algorithm is used on smaller subnetworks (or par-
titions) along the main diagonal. For example, instead of
using the latticization algorithm on a full 5000 · 5000 matrix,
smaller 500 · 500 partitions along the main diagonal can be
latticized. Using this approach decreases processing time be-
cause smaller networks are used by the algorithm.

The ‘‘sliding window’’ algorithm detailed here was used
on all the larger networks in this study ( > 1000 nodes). As
seen in Figure S3, the algorithm uses a three-step procedure
to generate a lattice network. The initial step still uses the
Sporns–Zwi algorithm with five iterations. This step was
used for all matrices regardless of network size because it pro-
vides a good starting point for the latticization algorithm. The
second and third steps use the input matrix, Aij(in); a user-de-
fined number of repetitions, R; and a window size, which rep-
resents the size of the partitions to be latticized.

Before use of the sliding window procedure, corner lattici-
zation is performed. Assuming a ring-like structure to the net-
work, nodes toward the beginning and end of the main
diagonal are considered close to each other. Connections
among these nodes populate the corners of the matrix; thus,
the sliding window procedure bypasses these nodes. On the
basis of the input window size, the corner latticization step ex-
tracts four equally sized corners from the input matrix and
joins them to form a smaller ‘‘corner matrix.’’ By using the



latticization algorithm detailed in Figure S3, the corner matrix
is latticized. After latticization, the corner matrix is split into
four parts and reinserted into the input matrix, replacing the
entries of the original matrix. With use of this new matrix,
the sliding window procedure is used on the full input matrix.
Along the main diagonal, a partition equal to the input win-
dow size is extracted, latticized, and reinserted into the ma-
trix. Moving half the distance of the window along the main
diagonal, another partition is extracted and latticized as be-
fore. The sliding window procedure continues until the entire
matrix is covered, resulting in a lattice network.

Network Resources

Biological, social, and technological networks were obtained
from various sources. All networks in this study were analyzed
as unweighted and undirected graphs. For disconnected
graphs, network analysis was done on the largest component
of the network. The US airlines network (Batagelj and Mrvar,
2006) was obtained from the Pajek datasets (http://vlado.fm-
f.uni-lj.si/pub/networks/data/). The e-mail (Guimerà et al.,
2003), jazz (Gleiser and Danon, 2003), and C. elegans metabolic
(Duch and Arenas, 2005) network were obtained from Alex
Arenas’s network datasets (http://deim.urv.cat/*aarenas/
data/welcome.htm). The karate (Zachary 1977), word adja-
cency (Newman 2006), football (Girvan and Newman, 2002),
dolphin (Lusseau et al., 2003), and Internet networks were
obtained from Mark Newman’s network data sets (www-per-
sonal.umich.edu/*mejn/netdata/). The Internet network is
from unpublished data by the University of Oregon Route
Views Project (http://routeviews.org/).

Brain Imaging Data Collection

Scanning protocol

Brain imaging data were collected from 11 healthy older
adults as part of a separate study evaluating an exercise program
(Burdette et al., 2010). All data reported here are from post-treat-
ment scans with participants in the control or the treatment
group. Functional magnetic resonance imaging (fMRI) data
were collected on a 1.5-T GE twin-speed LX scanner with a bird-
cage head coil (GE Medical Systems, Milwaukee, WI). Func-
tional imaging was performed by using multi-slice gradient-
echo planar images (repetition time/echo time, 2000 msec/
40 msec; field of view, 24 cm (frequency) · 15 cm (phase); matrix
size, 96 · 86; number of slices, 40; thickness, 5 mm; no skip; voxel
resolution, 3.75 mm · 3.75 mm · 5 mm). Participants performed
no task but were asked to keep their eyes open for the 6-min
20-sec (190 images) resting fMRI. Images were motion corrected,
normalized to Montreal Neurological Institute space, and
resliced to a 4 · 4 · 5-mm voxel size using SPM99 (Wellcome
Trust Centre for Neuroimaging, London, United Kingdom).
All participants gave written informed consent, and the study
was approved by the Institutional Review Board at Wake Forest
University School of Medicine, Winston-Salem, North Carolina.

Network analysis

Whole-brain functional connectivity was evaluated by using
graph theory methods on a voxel-by-voxel basis (Eguı́luz et al.,
2005; Hayasaka and Laurienti 2010; van den Heuvel et al.,
2008). The fMRI time courses were extracted for each voxel in

gray matter (approximately 15,000) and band-pass–filtered to
remove signal outside the range of 0.009–0.08 Hz (Fox et al.,
2005; van den Heuvel et al., 2008). Network analysis was based
on subject-specific gray-matter tissue maps with mean white
matter and cerebrospinal fluid signal regressed from the filtered
time series to account for physiological noise. The six rigid-body
motion parameters from the motion correction process were also
regressed from the time series. A correlation matrix was pro-
duced by computing the Pearson correlation coefficient between
all voxel pairs within fMRI time series. A threshold was applied
to the correlation matrix, whereby voxel pairs above the thresh-
old were considered connected and assigned a value of 1, and
voxel pairs below the threshold were considered not connected
and assigned a value of 0. This binary matrix produces an undi-
rected, unweighted adjacency matrix (Aij) representing the
whole-brain functional connectivity for each participant. To
make networks across subjects comparable, the threshold was
defined such that the relationship between the number of
nodes N and the average node degree K was the same across
all subjects. Specifically, the threshold was defined so that
S = log(N)/log(k) with S = 2.5 across all subjects for the study
(Stam et al., 2007; Supekar et al., 2008). From the adjacency ma-
trix, the following graph metrics were calculated at each node
and were averaged to yield means for the entire network: degree
(k), clustering coefficient (C), and minimum path length (L).
Details on calculating these graph metrics for an undirected, un-
weighted graph can be found in Rubinov and Sporns (2010).
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FIG. S1. Effect of network density on x. Four 1000-node networks were simulated at densities of 1% (A), 5% (B), 10% (C), and
20% (D). Each network was rewired at a given rewire probability to span the range from lattice to small-world to random.
Clustering and path length as well as x values for each network are shown.

Table S1. Network Statistics of Several Well-Known Biological, Social, and Technological Networks

Network N K C Crand Clatt L Lrand r x

Karate (Zachary 1977) 35 4.46 0.55 0.31 0.65 2.41 2.24 1.66 0.08
Dolphin (Lusseau et al., 2003) 62 5.13 0.26 0.10 0.57 3.36 2.71 2.03 0.35
Word adjacency (Newman 2006) 112 7.59 0.17 0.19 0.69 2.54 2.49 0.89 0.73
Football (Girvan and Newman, 2002) 115 10.66 0.40 0.08 0.67 2.51 2.24 4.67 0.29
Jazz (Gleiser and Danon, 2003) 198 27.70 0.62 0.26 0.76 2.24 1.99 2.08 0.08
US airlines (1997) (Batagelj and Mrvar, 2006) 332 12.81 0.63 0.43 0.73 2.74 2.48 1.32 0.04
Caenorhabditis elegans (metabolic) (Duch and Arenas, 2005) 453 8.94 0.65 0.28 0.80 2.66 2.50 2.18 0.12
E-mail (Guimerà et al., 2003) 1133 9.62 0.22 0.09 0.55 3.60 3.27 8.14 0.56
Protein interactions ( Jeong et al., 2001) 1539 2.67 0.07 0.04 0.19 6.81 5.69 1.47 0.47
Internet 22,963 4.22 0.23 0.09 0.68 3.84 3.58 2.28 0.51

The networks were each obtained from previous work as referenced. N, network size; K, degree; C, clustering coefficient; Crand, clustering of
an equivalent random network; Clatt, clustering of an equivalent lattice network; L, path length; r and x, small-worldness metrics.



FIG. S2. Schematic of network latticization procedure.



FIG. S3. Schematic of latticization procedure for larger networks. In larger networks, corner latticization and the sliding win-
dow procedures are used to speed up processing time.


