
SUPPLEMENTAL MATERIAL

Single particle

At any time t, the position of the particle in the channel is described by the vector

of probabilities pi(t) to be at a particular site i: |p(t)〉 = (p1(t), ...pi(t)...pN(t)), so that

〈i|p(t)〉 = pi(t) The probabilities pi(t) obey the following equations [1–3]

d

dt
pi(t) = r(pi−1 + pi+1 − 2pi) for 1 < i < N (1)

with the boundary conditions

d

dt
p1(t) = −(ro + r)p1 + rp2) and

d

dt
pN(t) = −(ro + r)pN + rpN−1. (2)

Equations (1,2) can be written in a matrix form as

d

dt
|p(t)〉 = M̂ · |p(t)〉, (3)

with

Mi,i = −2r and Mi,i±1 = r for 1 < i < N, (4)

and

M1,1 = −r − ro; MN,N = −r − ro; M1,2 = r; MN,N−1 = r. (5)

Explicit solution of single particle equations in terms of matrix elements

Here we re-derive the solutions obtained in the Letter, using the standard methods of

linear algebra [4]. Assume an arbitrary Markov process that can be in N states (such as

defined by equation (3)). Time evolution of its probability distribution ~p(t) = (p1, p2, ..., pN)

and can be described by the following matrix equation (the equation (3) is an example):

~̇p = Û · ~p (6)

where ~p is an N -dimensional vector, and Û is an N×N matrix. Let us denote the eigenvalues

of the matrix Û as ω1...ωi...ωN and the corresponding eigenvectors as ~v1, ..., ~vi, ...~vN . Then

the general solution is

~p(t) =
N∑

j=1

aj~v
jeωjt, (7)

1



where a1...aN is a set of numerical coefficients. In other words,

pi(t) =
N∑

j=1

ajv
j
i e

ωjt. (8)

The coefficients aj can be determined from the initial condition:

pi(0) =
N∑

j=1

ajv
j
i , (9)

which can be written as

~p(0) = V̂ · ~a, (10)

where

V̂ =




~v1

...

~vi

...

~vN




T

so that Vij = vj
i . Finally

~a = V̂ −1 · ~p(0) (11)

and

ak =
N∑

j=1

(V −1)kjpj(0) (12)

For the initial condition pi(0) = δi,1, we get ak = (V −1)k1. Now, the matric U is diago-

nalized to its diagonal form

Ŵ =




w1 0 ... 0

..... ..... ....

0 ... wi ... 0

..... .... ....

0 ... 0 wN




by the transformation W = V −1UV , or equivalently U = V WV −1 [4].

Thus, the probability to be in state i at time t is

pi(t) =
N∑

j=1

ajv
j
i exp wjt =

N∑
j=1

(V −1)j1Vije
wjt =

(
V eWtV −1

)
i1

=
(
eUt

)
i1

(13)
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and in particular,

pN(t) =
(
eUt

)
N1

(14)

The probability flow to exit to the right is ropN(t), and the total probability of exit to

the right is

P→ = ro

∫ ∞

0

pN(t)dt = −ro

N∑
j=1

ajv
j
N

1

wj

= −ro

N∑
j=1

(V −1)j1VNj
1

wj

(
V W−1V −1

)
N1

= −roU
−1
N1(15)

in agreement with equation (2) in the Letter. This result can be also obtained using

the following reasoning. Instead of considering a single particle hopping through the states,

starting at the position 1, let us consider the steady state where a flux J enters to a position

1, with a steady state probability distribution ~p. Then the probability to exit to the right

is the ratio of the transmitted flux to the entrance flux: ropN/J . We have

0 = Û · ~p + ~J (16)

and therefore ~p = −U−1 · ~J so that pN = −U−1
N1 because Ji = Jδi,1.

The probability distribution of exit times to the right is simply ropN(t) [3] and any

moment of it can be calculated easily. For instance, the mean first passage time to exit to

the right is:

T̄→ = ro

∫ ∞

0

tPN(t)dt = ro

N∑
j=1

(V −1)j1VNj
1

w2
j

= ro

(
V (W 2)−1V −1

)
N1

= ro

(
U2

)−1

N1
(17)

in agreement with the equation (3) in the Letter.

Steady state

In the case of current J impinging on the channel entrance, one can describe the sys-

tem in terms of average site occupancies ni, whose kinetics is described in the mean field

approximation by the following equations [5–7].

d

dt
ni = rni−1(1−ni

m
)+rni+1(1−ni

m
)−rni(1−ni−1

m
)−rni(1−ni+1

m
) = r(ni−1+ni+1−2ni) for 1 < i < N.

(18)
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where m is the maximal site occupancy. The boundary conditions at sites 1 and N are

d

dt
n1 = −(r + ro)n1 + rn2 + J(1− n1

m
)

d

dt
nN = −(r + ro)nN + rnN−1. (19)

In a matrix form:

d

dt
|n(t)〉 = M̂J · |n(t)〉+ ~J (20)

where the matrix M̂J is the same as M̂ with the only change M̂J
1,1 = −J/m − r − ro and

~J = (J, 0, ...0). Note that for an internally uniform channel (as the one described in Fig. 1)

the mean-field equations (Eqs. (18,20)) are exact [5, 6].

The steady state density profile can be obtained from Eq. (20) as |n〉ss = −
(
M̂J

)−1

· ~J ,

or more specifically as:

nss
i =

J
(
1 + (N − i) ro

r

)

ro

(
2 + (N − 1) ro

r

)
+ J

m

(
1 + (N − 1) ro

r

) . (21)

The average exit flux to the right is J→ = ron
ss
N . This together with Eq. (21) yield the

probability of an individual particle within the flux to exit to the right:

P ss
→ =

J→
J(1− n1/m)

=
1

2 + (N − 1)ro/r
. (22)

As already established before, the exit probability of individual particles to exit to the right

is the same as in the single-particle case (at least for uniform channels), even though they

are interfering with each other’s passage through the channel [7].

However, crowding does influence transport and is manifested in obstruction of the en-

trance site. The transport efficiency, defined as the ratio of the exit flux to the right J→ to

the total impinging flux J , Eff→ = J→
J

, decreases with J due to jamming at the entrance.

Eff→ =
J→
J

=
ro

2r + (N − 1)ro + J(1 + (N − 1)ro/r)/m
. (23)
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Derivation of the analytical expressions for the mean exit times in the jammed

regime

The boundary conditions of equation (8) of the Letter, describing the probability of the

tagged particle are:

d

dt
p1 = −rop1 − rp1(1− nss

2 /m) + rp2(1− nss
1 /m)

d

dt
pN = −ropN − rpN(1− nss

N−1/m) + rpN−1(1− nss
N/m) (24)

Using the matrix form of Eq. (9) of the paper, the elements of the matrix M ss are given by

M ss
i,i = −r(2−nss

i−1/m−nss
i+1/m) = −2r(1−nss

i /m); and M ss
i,i±1 = r(1−nss

i /m) for 1 < i < N,

(25)

and

M ss
1,1 = −r(1− nss

1

m
)− ro; M ss

N,N = −r(1− nss
N−1

m
)− ro; M ss

1,2 = r(1− nss
1

m
); M ss

N,N−1 = r(1− nss
N

m
).(26)

The average (over particles actually exited to the left) time to exit to the left is

T
ss

← = ro 〈1|
(
(M ss)−1)2 |1〉 /P←, (27)

where

P← = 1− P→ =
1 + (N − 1) ro/r

2 + (N − 1) ro/r
. (28)

In order to obtain an explicit expression for T
ss

← we define

|W 〉 = D (M ss)−1 |1〉 (29)

and

〈Q| = D 〈1| (M ss)−1 . (30)

In the equations above we introduced the notation for the determinant of M ss, D ≡
det (M ss). The elements of these vectors are given by

Wn = rN−2 (ANr + nBNr + (N − n) ro)
N−1∏

k=2

(AN + kBN) (31)

and

Qn = rN−2 (ANr + nBNr + (N − n) ro)

N−1∏

k=1

(AN + kBN)

AN + nBN

. (32)
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In the above expressions

AN =
ro (2r + (N − 1) ro − J/m)

(J/m) (r + (N − 1) ro) + ro (2r + (N − 1) ro)
(33)

and

BN =
Jro/m

(J/m) (r + (N − 1) ro) + ro (2r + (N − 1) ro)
. (34)

The mean escape time to the left is then

T
ss

←P← =
ro

D2

N∑
n=1

WnQn =
ro

D2

N∑
n=1

r2N−4 (ANr + nBNr + (N − n) ro)
2 (AN + BN)

AN + nBN

N−1∏

k=2

(AN + kBN)2 .

(35)

Using the notations above we can express D as:

D = rN−2ro (2ANr + (N + 1) BNr + (N − 1) ro)
N−1∏

k=2

(AN + kBN) . (36)

Substituting D into the expression for T
ss

← one obtains

T
ss

←P← =

(AN + BN)
N∑

n=1

(AN r+nBNr+(N−n)ro)2

AN+nBN

ro (2ANr + (N + 1) BNr + (N − 1) ro)
2 . (37)

Performing the summation, we get for the average time to exit the channel to the left

T
ss

←P←
(AN + BN)

=
(N(BNr − ro)(2AN(BNr + ro) + BN(BN(N + 1)r + (3N − 1)ro)))

2B2
Nro (2ANr + (N + 1) BNr + (N − 1) ro)

2

+
ro(AN + NBN)2

(
ψ

(
AN

BN
+ N + 1

)
− ψ

(
AN+BN

BN

))

B3
N (2ANr + (N + 1) BNr + (N − 1) ro)

2 . (38)

Here ψ (x) = d ln(Γ(z))
dz

|z=x, where Γ(x) is the γ-function.

Substituting the expressions for AN and BN , we get the explicit expression for the average

time as

T
ss

← = −N
(
2ro (2r + ro (N − 1)) + J

m
(4r + 3ro (N − 1))

)

2 (J/m)2 (r + ro (N − 1))

+
(J/m) (r + ro (N − 1)) + ro (2r + ro (N − 1))

(J/m)3ro (r + ro (N − 1)))

(
ψ

(
N +

2r + (N − 1) ro

J/m

)
− ψ

(
2r + (N − 1)ro

J/m

))
.

(39)

In the Letter we use the definitions of the probabilities to exit to the right/left in order to

simplify this cumbersome expression. In the single particle limit, J → 0, the expression for
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T
ss

← reduces to the previously obtained single particle expression (Eq. (6) in the paper). At

the other extreme when the input flux J →∞, the mean escape time is

lim
J→∞

T
ss

← =
r + (N − 1)ro

ro(2r + (N − 1)ro)
=

P←
ro

. (40)

The mean time to exit to the right and the mean trapping time can be obtained in a similar

fashion.
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[5] G. M. Schütz, Diffusion Fundamentals 2, 5 (2005).

[6] T. Chou, Phys. Rev. Lett. 80, 85 (1998).

[7] A. Zilman, Biophys. J. 96, 1235 (2008).

7


