Genome-wide Association Study Identifies Multiple Loci Influencing Human Serum Metabolite Levels

Johannes Kettunen^{1,2,37}, Taru Tukiainen^{1,3,4,5,37}, Antti-Pekka Sarin^{1,2}, Alfredo Ortega-Alonso^{1,6}, Emmi Tikkanen^{1,2}, Leo-Pekka Lyytikäinen⁷, Antti J. Kangas⁵, Pasi Soininen^{5,8}, Peter Würtz^{1,3,5}, Kaisa Silander^{1,2}, Danielle M. Dick⁹, Richard J. Rose^{6,10}, Markku J. Savolainen^{11,12}, Jorma Viikari¹³, Mika Kähönen¹⁴, Terho Lehtimäki⁷, Kirsi H. Pietiläinen^{1,15,16}, Michael Inouye^{17,18}, Mark I. McCarthy^{19,20}, Antti Jula², Johan Eriksson^{21,22,23,24}, Olli T. Raitakari^{25,26}, Veikko Salomaa², Jaakko Kaprio^{1,6,27}, Marjo-Riitta Järvelin^{3,12,28,29,30}, Leena Peltonen³⁶, Markus Perola^{1,2,31}, Nelson B. Freimer³², Mika Ala-Korpela^{5,8,11,12}, Aarno Palotie^{1,33,34,35} and Samuli Ripatti^{1,2,33,#}

- 1. Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- 2. Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- 3. Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
- 4. Department of Biomedical Engineering and Computational Science, School of Science, Aalto University, Espoo, Finland
- 5. Computational Medicine Research Group, Institute of Clinical Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- 6. Department of Public Health, University of Helsinki, Helsinki, Finland
- 7. Department of Clinical Chemistry, University of Tampere and Tampere University Hospital, Tampere, Finland
- 8. NMR Metabonomics Laboratory, Department of Biosciences, University of Eastern Finland, Kuopio, Finland
- 9. Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
- 10. Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
- 11. Department of Internal Medicine, Clinical Research Center, University of Oulu, Oulu, Finland
- 12. Biocenter Oulu, University of Oulu, Oulu, Finland
- 13. Department of Medicine, University of Turku and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology, University of Tampere and Tampere and Tampere University Hospital, Tampere, Finland
 Department of Medicine, Division of Internal Medicine, Obesity Research Unit, Helsinki University Central Hospital, Helsinki, Finland
- 16. Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland
- 17. Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia
- 18. Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- 19. Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
- 20. Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford, UK
- 21. Unit of Chronic Disease Epidemiology and Prevention, National Institute for Health and Welfare, Helsinki, Finland
- 22. Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- 23. Unit of General Practice, Helsinki University Central Hospital, Helsinki, Finland
- 24. Folkhälsan Research Centre, Helsinki, Finland
- 25. Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- 26. Department of Clinical Physiology, Turku University Hospital, Turku, Finland
- 27. Department of Mental Health and Alcohol Abuse Services, National Institute for Health and Welfare, Helsinki, Finland
- 28. MRC Health Protection Agency (HPA) Centre for Environment and Health, Imperial College London, London UK
- Institute of Health Sciences, University of Oulu, Oulu, Finland
 Department of Lifecourse and Services, National Institute of Health and Welfare, Oulu, Finland
- 31. Estonian Genome Centre, University of Tartu, Tartu, Estonia
- 32. Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
- 33. Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- 34. Department of Medical Genetics, University of Helsinki and the Helsinki University Hospital, Helsinki, Finland
- 35. The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- 36. Deceased.
- 37. These authors contributed equally to this work.

Contact: samuli.ripatti@fimm.fi,

Topics in this supplement:

Supplementary Tables

Supplementary Figures

Supplementary Note

- Study samples and phenotypes
- Study descriptions
- Quantitative serum NMR metabolomics
- Conditional analyses
- Validation by sequencing
- Heritability estimates
- References

Supplementary Tables

Supplementary Table 1. Metabolite abbreviations and sample sizes used for the analyses for all metabolic traits used in this study.

Abbreviation	Full metabolite name	N (NFBC)	N (YF)	N (HBCS)	N (GenMets)	N (DILGOM)	N (Total)
AcAcO	Acetoacetate	4677	1889	701	568	441	8276
AcO	Acetate	4703	1904	708	572	441	8328
Ala	Alanine	4703	1904	708	572	442	8329
Alb	Albumin	4627	1889	696	562	441	8215
bOHBuO	3-hydroxybutyrate	4694	1900	704	0	439	7737
Cit	Citrate	4589	1868	659	563	441	8120
Crea	Creatinine	4698	1901	708	571	443	8321
DHA	22:6, docosahexaenoic acid (DHA)	4547	1871	619	542	432	8011
Est-C	Esterified cholesterol	4523	1866	681	549	433	8052
FAw3	Omega-3 fatty acids	4503	1874	682	548	432	8039
FAw67	Omega-6 and -7 fatty acids	4504	1873	682	548	432	8039
FAw9S	Omega-9 and saturated fatty acids	4504	1873	682	548	432	8039
Free-C	Free cholesterol	4523	1866	681	549	433	8052
Glc	Glucose	4700	1904	708	572	441	8325
Gln	Glutamine	4370	1858	261	562	441	7492
Glol	Glycerol	4698	1901	703	0	439	7741
Gp	Glycoprotein acetyls, mainly a1-acid glycoprotein	4703	1904	708	572	442	8329
HDL-C	Total cholesterol in HDL	4627	1889	696	562	441	8215
His	Histidine	4700	1898	706	572	442	8318
IDL-C	Total cholesterol in IDL	4627	1889	696	562	441	8215
IDL-FC	Free cholesterol in IDL	4627	1889	696	562	441	8215
IDL-L	Total lipids in IDL	4627	1889	696	562	441	8215
IDL-P	Concentration of IDL particles	4627	1889	696	562	441	8215
IDL-PL	Phospholipids in IDL	4627	1889	696	562	441	8215
IDL-TG	Triglycerides in IDL	4627	1889	696	562	441	8215
lle	Isoleucine	4703	1904	708	572	441	8328
LA	18:2, linoleic acid (LA)	4554	1879	683	549	433	8098
Lac	Lactate	4687	1901	707	570	441	8306
LDL-C	Total cholesterol in LDL	4627	1889	696	562	441	8215
Leu	Leucine	4703	1902	708	572	441	8326
L-HDL-C	Total cholesterol in large HDL	4627	1889	696	562	441	8215
L-HDL-CE	Cholesterol esters in large HDL	4627	1889	696	562	441	8215
L-HDL-FC	Free cholesterol in large HDL	4627	1889	696	562	441	8215
L-HDL-L	Total lipids in large HDL	4627	1889	696	562	441	8215
L-HDL-P	Concentration of large HDL particles	4627	1889	696	562	441	8215
L-HDL-PL	Phospholipids in large HDL	4627	1889	696	562	441	8215

Abbreviation	Full metabolite name	N (NFBC)	N (YF)	N (HBCS)	N (GenMets)	N (DILGOM)	N (Total)
L-LDL-C	Total cholesterol in large LDL	4627	1889	696	562	441	8215
L-LDL-CE	Cholesterol esters in large LDL	4627	1889	696	562	441	8215
L-LDL-FC	Free cholesterol in large LDL	4627	1889	696	562	441	8215
L-LDL-L	Total lipids in large LDL	4627	1889	696	562	441	8215
L-LDL-P	Concentration of large LDL particles	4627	1889	696	562	441	8215
L-LDL-PL	Phospholipids in large LDL	4627	1889	696	562	441	8215
L-VLDL-C	Total cholesterol in large VLDL	4627	1889	696	562	441	8215
L-VLDL-CE	Cholesterol esters in large VLDL	4627	1889	696	562	441	8215
L-VLDL-FC	Free cholesterol in large VLDL	4627	1889	696	562	441	8215
L-VLDL-L	Total lipids in large VLDL	4627	1889	696	562	441	8215
L-VLDL-P	Concentration of large VLDL particles	4627	1889	696	562	441	8215
L-VLDL-PL	Phospholipids in large VLDL	4627	1889	696	562	441	8215
L-VLDL-TG	Triglycerides in large VLDL	4627	1889	696	562	441	8215
M-HDL-C	Total cholesterol in medium HDL	4627	1889	696	562	441	8215
M-HDL-CE	Cholesterol esters in medium HDL	4627	1889	696	562	441	8215
M-HDL-FC	Free cholesterol in medium HDL	4627	1889	696	562	441	8215
M-HDL-L	Total lipids in medium HDL	4627	1889	696	562	441	8215
M-HDL-P	Concentration of medium HDL particles	4627	1889	696	562	441	8215
M-HDL-PL	Phospholipids in medium HDL	4627	1889	696	562	441	8215
M-LDL-C	Total cholesterol in medium LDL	4627	1889	696	562	441	8215
M-LDL-CE	Cholesterol esters in medium LDL	4627	1889	696	562	441	8215
M-LDL-L	Total lipids in medium LDL	4627	1889	696	562	441	8215
M-LDL-P	Concentration of medium LDL particles	4627	1889	696	562	441	8215
M-LDL-PL	Phospholipids in medium LDL	4627	1889	696	562	441	8215
MobCH	Double bond protons of mobile lipids	4703	1904	708	572	442	8329
MobCH2	CH2 groups of mobile lipids	4703	1904	708	572	443	8330
MobCH3	CH3 groups of mobile lipids	4703	1904	708	572	443	8330
M-VLDL-C	Total cholesterol in medium VLDL	4627	1889	696	562	441	8215
M-VLDL-CE	Cholesterol esters in medium VLDL	4627	1889	696	562	441	8215
M-VLDL-FC	Free cholesterol in medium VLDL	4627	1889	696	562	441	8215
M-VLDL-L	Total lipids in medium VLDL	4627	1889	696	562	441	8215
M-VLDL-P	Concentration of medium VLDL particles	4627	1889	696	562	441	8215
M-VLDL-PL	Phospholipids in medium VLDL	4627	1889	696	562	441	8215
M-VLDL-TG	Triglycerides in medium VLDL	4627	1889	696	562	441	8215
РС	Phosphatidylcholine and other cholines	4562	1833	593	476	431	7895
Phe	Phenylalanine	4698	1902	707	572	442	8321
PUFA	Other polyunsaturated fatty acids than 18:2	4474	1855	683	546	433	7991
Pyr	Pyruvate	4678	1891	695	570	440	8274
Serum-C	Serum total cholesterol	4627	1889	696	562	441	8215
Serum-TG	Serum total triglycerides	4627	1889	696	562	441	8215
S-HDL-L	Total lipids in small HDL	4627	1889	696	562	441	8215
S-HDL-P	Concentration of small HDL particles	4627	1889	696	562	441	8215

Abbreviation	Full metabolite name	N (NFBC)	N (YF)	N (HBCS)	N (GenMets)	N (DILGOM)	N (Total)
S-HDL-TG	Triglycerides in small HDL	4627	1889	696	562	441	8215
S-LDL-C	Total cholesterol in small LDL	4627	1889	696	562	441	8215
S-LDL-L	Total lipids in small LDL	4627	1889	696	562	441	8215
S-LDL-P	Concentration of small LDL particles	4627	1889	696	562	441	8215
SM	Sphingomyelins	4466	1838	657	486	430	7877
S-VLDL-C	Total cholesterol in small VLDL	4627	1889	696	562	441	8215
S-VLDL-FC	Free cholesterol in small VLDL	4627	1889	696	562	441	8215
S-VLDL-L	Total lipids in small VLDL	4627	1889	696	562	441	8215
S-VLDL-P	Concentration of small VLDL particles	4627	1889	696	562	441	8215
S-VLDL-PL	Phospholipids in small VLDL	4627	1889	696	562	441	8215
S-VLDL-TG	Triglycerides in small VLDL	4627	1889	696	562	441	8215
Tot-C	Total cholesterol	4562	1879	683	549	433	8106
Tot-CH	Total cholines (and other N-trimethyl compounds)	4561	1876	683	549	433	8102
Tot-FA	Total fatty acids	4502	1873	682	548	432	8037
Tot-PG	Total phosphoglycerides	4562	1836	592	477	421	7888
Tot-TG	Total triglycerides	4559	1847	662	538	430	8036
Tyr	Tyrosine	4666	1899	641	563	441	8210
Urea	Urea	4694	1898	697	571	441	8301
Val	Valine	4702	1903	705	572	441	8323
VLDL-TG	Triglycerides in VLDL	4627	1889	696	562	441	8215
XL-HDL-C	Total cholesterol in very large HDL	4627	1889	696	562	441	8215
XL-HDL-CE	Cholesterol esters in very large HDL	4627	1889	696	562	441	8215
XL-HDL-FC	Free cholesterol in very large HDL	4627	1889	696	562	441	8215
XL-HDL-L	Total lipids in very large HDL	4627	1889	696	562	441	8215
XL-HDL-P	Concentration of very large HDL particles	4627	1889	696	562	441	8215
XL-HDL-PL	Phospholipids in very large HDL	4627	1889	696	562	441	8215
XL-HDL-TG	Triglycerides in very large HDL	4627	1889	696	562	441	8215
XL-VLDL-L	Total lipids in very large VLDL	4627	1889	696	562	441	8215
XL-VLDL-P	Concentration of very large VLDL particles	4627	1889	696	562	441	8215
XL-VLDL-PL	Phospholipids in very large VLDL	4627	1889	696	562	441	8215
XL-VLDL-TG	Triglycerides in very large VLDL	4627	1889	696	562	441	8215
XS-VLDL-L	Total lipids in very small VLDL	4627	1889	696	562	441	8215
XS-VLDL-P	Concentration of very small VLDL particles	4627	1889	696	562	441	8215
XS-VLDL-PL	Phospholipids in very small VLDL	4627	1889	696	562	441	8215
XS-VLDL-TG	Triglycerides in very small VLDL	4627	1889	696	562	441	8215
XXL-VLDL-L	Total lipids in chylomicrons and largest VLDL particles	4627	1889	696	562	441	8215
XXL-VLDL-P	Concentration of chylomicrons and largest VLDL particles	4627	1889	696	562	441	8215
XXL-VLDL-PL	Phospholipids in chylomicrons and largest VLDL particles	4627	1889	696	562	441	8215
XXL-VLDL-TG	Triglycerides in chylomicrons and largest VLDL particles	4627	1889	696	562	441	8215
AcO/AcAcO	Acetate to acetoacetate ratio	4671	1887	697	566	438	8259

Abbreviation	Full metabolite name	N (NFBC)	N (YF)	N (HBCS)	N (GenMets)	N (DILGOM)	N (Total)
Ala/Cit	Alanine to citrate ratio	4568	1855	651	559	439	8072
Ala/Glc	Alanine to glucose ratio	4688	1898	706	571	441	8304
Ala/Gln	Alanine to glutamine ratio	4356	1854	259	560	441	7470
Ala/His	Alanine to histidine ratio	4686	1894	705	570	442	8297
Ala/Ile	Alanine to isoleucine ratio	4702	1902	706	571	441	8322
Ala/Leu	Alanine to leucine ratio	4697	1900	708	572	440	8317
Ala/Phe	Alanine to phenylalnine ratio	4684	1900	705	571	442	8302
Ala/Pyr	Alanine to pyruvate ratio	4666	1887	694	567	439	8253
Ala/Tyr	Alanine to tyrosine ratio	4650	1894	641	562	439	8186
Ala/Val	Alanine to valine ratio	4690	1897	702	569	440	8298
ApoA1	Apolipoprotein A-I (Lipido)	4338	1837	655	534	420	7784
АроВ	Apolipoprotein B (Lipido)	4338	1837	655	534	420	7784
ApoBtoApoA1	Apolipoprotein B by apolipoprotein A-I (Lipido)	4338	1837	655	534	420	7784
BCAAs	Total branched chain amino acids; Val+Leu+Ile	4691	1901	704	572	441	8309
Bis/DB	Ratio of bisallylic groups to double bonds	4467	1849	681	546	433	7976
Bis/FA	Ratio of bisallylic groups to total fatty acids	4422	1850	682	545	432	7931
bOHBuO/AcAcO	3-hydroxybutyrate to acetoacetate ratio	4662	1885	694	0	435	7676
bOHBuO/AcO	3-hydroxybutyrate to acetate ratio	4651	1877	697	0	432	7657
CH2/DB	Average number of methylene groups per a double bond	4544	1872	681	549	433	8079
CH2/FA	Average number of methylene groups in a fatty acid chain	4500	1873	682	548	432	8035
Crea/Alb	Creatinine to albumin ratio	4622	1886	692	561	440	8201
DB/FA	Average number of double bonds in a fatty acid chain	4494	1867	680	548	432	8021
DHA/FAw3	Docosahexaenoic acid to omega-3 fatty acids ratio	4466	1843	614	537	429	7889
DHA/PUFA	Docosanexaenoic acid to other polyunsaturated fatty acids than linoleic acid ratio	4451	1829	619	537	432	7868
FALen	Description of average fatty acid chain length,	4415	1844	680	545	432	7916
FAw3/FAw67	Omega-3 fatty acids to omega-6 and -7 fatty acids ratio	4473	1862	680	545	431	7991
FAw3/FAw9S	Omega-3 fatty acids to omega-9 and saturated fatty acids ratio	4478	1866	681	547	431	8003
FAw3/FA	Ratio of omega-3 fatty acids to total fatty acids	4502	1873	682	548	432	8037
FAw67/FAw9S	Omega-6 and -7 fatty acids ratio to omega-9 and saturated fatty acids ratio	4500	1871	681	547	432	8031
FAw67/FA	Ratio of omega-6/7 fatty acids to total fatty acids	4502	1873	682	548	432	8037
FAw9S/FA	Ratio of omega-9 and saturated fatty acids to total fatty acids	4502	1873	682	548	432	8037
FR	Fischer's ratio; (Val+Leu+Ile)/(Phe+Tyr)	4658	1892	637	562	440	8189
Free-C/Est-C	Free cholesterol to esterified cholesterol ratio	4493	1851	680	549	431	8004
Glc/Cit	Glucose to citrate ratio	4558	1856	651	559	439	8063
Glc/Pyr	Glucose to pyruvate ratio	4663	1888	693	567	437	8248
Gln/Cit	Glutamine to citrate ratio	4291	1810	254	550	439	7344
Gln/Glc	Glutamine to glucose ratio	4353	1853	261	562	438	7467

Abbreviation	Full metabolite name	N (NFBC)	N (YF)	N (HBCS)	N (GenMets)	N (DILGOM)	N (Total)
Gln/His	Glutamine to histidine ratio	4365	1854	260	561	441	7481
Gin/Ile	Glutamine to isoleucine ratio	4369	1855	261	561	439	7485
Gln/Leu	Glutamine to leucine ratio	4365	1856	261	561	438	7481
Gln/Phe	Glutamine to phenylalnine ratio	4366	1855	261	561	440	7483
Gln/Pyr	Glutamine to pyruvate ratio	4340	1845	256	558	438	7437
Gln/Tyr	Glutamine to tyrosine ratio	4345	1854	259	555	439	7452
Gin/Val	Glutamine to valine ratio	4368	1854	261	561	439	7483
Gp/Serum-TG	Glycoprotein acetyls to serum total triglycerides ratio	4609	1876	688	557	438	8168
Gp/Tot-C	Glycoprotein acetyls to serum total cholesterol ratio	4552	1876	682	548	430	8088
HDL2-C	Total cholesterol in HDL2 (Lipido)	4620	1889	696	561	441	8207
HDL3-C	Total cholesterol in HDL3 (Lipido)	4620	1889	696	561	441	8207
HDL-D	Mean diameter for HDL particles	4627	1889	696	562	441	8215
His/Ile	Histidine to isoleucine ratio	4699	1893	705	569	440	8306
His/Leu	Histidine to leucine ratio	4694	1896	706	572	441	8309
His/Phe	Histidine to phenylalnine ratio	4691	1896	705	571	442	8305
His/Tyr	Histidine to tyrosine ratio	4644	1890	640	562	438	8174
His/Val	Histidine to valine ratio	4688	1895	700	572	438	8293
IDL-C-eFR	Total cholesterol in IDL (Lipido)	4622	1889	696	562	441	8210
lle/Glc	Isoleucine to glucose ratio	4689	1899	702	570	437	8297
lle/Leu	Isoleucine to leucine ratio	4695	1901	708	572	439	8315
lle/Phe	Isoleucine to phenylalnine ratio	4689	1900	705	570	439	8303
Ile/Serum-C	Isoleucine to serum total cholesterol ratio	4617	1886	694	560	437	8194
Ile/Serum-TG	Isoleucine to serum total triglycerides ratio	4605	1877	689	560	438	8169
lle/Tyr	Isoleucine to tyrosine ratio	4657	1899	639	561	438	8194
lle/Val	Isoleucine to valine ratio	4676	1896	701	568	439	8280
LA/DHA	Linoleic acid to docosahexaenoic acid ratio	4521	1860	615	538	429	7963
LA/FAw67	Linoleic acid to omega-6 and -7 fatty acids ratio	4499	1871	678	548	430	8026
LA/PUFA	Linoleic acid to other polyunsaturated fatty acids than linoleic acid ratio	4468	1850	681	544	432	7975
Lac/Ala	Lactate to alanine ratio	4674	1889	705	569	439	8276
Lac/Cit	Lactate to citrate ratio	4552	1851	652	557	438	8050
Lac/Glc	Lactate to glucose ratio	4672	1891	705	569	438	8275
Lac/Gln	Lactate to glutamine ratio	4343	1843	260	556	437	7439
Lac/Pyr	Lactate to pyruvate ratio	4644	1879	693	565	438	8219
LDL-C-eFR	Total cholesterol in LDL (Lipido)	4622	1889	696	562	441	8210
LDL-D	Mean diameter for LDL particles	4627	1889	696	562	441	8215
Leu/Glc	Leucine to glucose ratio	4693	1900	708	571	440	8312
Leu/Phe	Leucine to phenylalanine ratio	4689	1897	707	571	441	8305
Leu/Serum-TG	Leucine to serum total triglycerides ratio	4607	1879	689	559	438	8172
Leu/Tyr	Leucine to tyrosine ratio	4653	1897	641	562	440	8193
Leu/Val	Leucine to valine ratio	4692	1891	703	570	438	8294

Abbreviation	Full metabolite name	N (NFBC)	N (YF)	N (HBCS)	N (GenMets)	N (DILGOM)	N (Total)
L-HDL-C/L-HDL-	Total cholesterol in large HDL to	4619	1887	695	562	439	8202
L-HDL-L/M-HDL-	Total lipids in large HDL to total lipids in medium HDL ratio	4617	1887	694	561	439	8198
L-HDL-L/S-HDL-L	Total lipids in large HDL to total lipids in small HDL ratio	4620	1886	695	561	440	8202
M-HDL-C/M- HDL-PL	Total cholesterol in medium HDL to phospholipids in medium HDL ratio	4617	1887	695	562	439	8200
M-HDL-L/S- HDL-L	Total lipids in medium HDL to total lipids in small HDL ratio	4627	1889	696	561	441	8214
M-LDL-C/M- LDL-PL	Total cholesterol in medium LDL to phospholipids in medium LDL ratio	4623	1887	694	561	441	8206
PC/Tot-CH	Phosphatidylcholine and other cholines to total cholines (and other N-trimethyl compounds) ratio	4524	1828	582	472	431	7837
Phe/Tyr	Phenylalanine to tyrosine ratio	4643	1887	640	563	440	8173
Phe/Val	Phenylalanine to valine ratio	4685	1893	701	571	440	8290
Pyr/Cit	Pyruvate to citrate ratio	4543	1840	641	556	434	8014
Serum-TG/Glc	Serum total triglycerides to glucose ratio	4595	1885	694	561	436	8171
TG/PG	Ratio of triglycerides to phosphoglycerides	4559	1808	577	469	421	7834
Tot-C/Est-C	Total cholesterol to esterified cholesterol ratio	4493	1851	680	549	431	8004
Tyr/Val	Tyrosine to valine ratio	4659	1895	637	562	438	8191
Val/Glc	Valine to glucose ratio	4693	1899	705	570	440	8307
Val/Serum-TG	Valine to serum total triglycerides ratio	4609	1879	686	561	437	8172
VLDL-D	Mean diameter for VLDL particles	4627	1889	696	562	441	8215
VLDL-TG-eFR	Triglycerides in VLDL (Lipido)	4622	1889	696	562	441	8210
XL-HDL-L/L- HDL-L	Total lipids in very large HDL to total lipids in large HDL ratio	4625	1876	695	560	439	8195
XL-HDL-L/M- HDL-L	Total lipids in very large HDL to total lipids in medium HDL ratio	4607	1884	691	559	439	8180
XL-HDL-L/S- HDL-L	Total lipids in very large HDL to total lipids in small HDL ratio	4613	1884	692	560	438	8187

Supplementary Table 2. Rationale for the selection of ratios used in this study. Metabolite ratios are proxies for enzymatic activity when a pair of metabolites are closely connected to the direct substrates and products of an enzymatic conversion. The metabolites comprising the ratios are implicated in lipolysis, proteolysis, ketogenesis and glycolysis as well as reagents and products of enzymatic reactions. Table also lists the implied relations between ratios and disease end points when known.

Metabolic pathway	Ratios	Rational for the ratios
Amino acid metabolism	Ala/Gln, Ala/His, Ala/Ile, Ala/Leu, Ala/Phe, Ala/Tyr, Ala/Val, Gln/His, Gln/Ile, Gln/Leu, Gln/Phe, Gln/Tyr, Gln/Val, His/Ile, His/Leu, His/Phe, His/Tyr, His/Val, Ile/Leu, Ile/Phe, Ile/Tyr, Ile/Val, Leu/Phe, Leu/Tyr, Leu/Val, Phe/Tyr, Phe/Val, Tyr/Val	Enzymatic activity in interconversion of amino acids.
Gluconeogenesis	Ala/Cit, Ala/Pyr, Ala/Glc, Glc/Cit, Gln/Cit, Glc/Pyr, Gln/Glc, Gln/Pyr, Lac/Ala, Lac/Cit, Lac/Glc, Lac/Gln, Lac/Pyr, Pyr/Cit	Enzymatic activity in reactions implicated in glylosis and gluconeogenesis, lactic acidosis, and mitochondrial redox state.
Ketogenesis	AcO/AcAcO, bOHBuO/AcAcO, bOHBuO/AcO	Enzymatic activity in ketoacidosis, lactic acidosis, and mitochondrial redox state.
Kidney function	Crea/Alb	Estimated glomerular filtration rate.
Branched-chain amino acid link to lipid metabolism	Ile/Serum-C, Ile/Serum-TG, Leu/Serum-TG, Val/Serum-TG	Role of branched-chain amino acids in lipid metabolism ^{8, 16} .
Branched-chain amino acid link to glucose metabolism	Ile/Glc, Leu/Glc, Val/Glc, Serum-TG/Glc	Role of branched-chain amino acids in development of insulin resistance ¹⁷ , T2D ¹⁸ and obesity ¹⁶ .
Glycoprotein link to lipid metabolism	Gp/Serum-TG, Gp/Tot-C	Connection between low-grade inflammation and lipid metabolism ⁸ .
Selected lipid ratios	Free-C/Est-C, Tot-C/Est-C, L-HDL-C/L-HDL-PL, M-HDL-C/M-HDL-PL, M-LDL-C/M-LDL-PL, PC/Tot-CH, TG/PG, ApoB/ApoA1	Measures of cholesterol esterification ¹⁹ , cholesterol to phosholipid balance in HDL ^{20, 21} , phoshocholine and phosphoglycerine balance, and apolipoproteinbalance, a measure for cardiovascular risk ¹³ .
HDL size ratios	XL-HDL-L/L-HDL-L, XL-HDL-L/M-HDL-L, XL- HDL-L/S-HDL-L, L-HDL-L/M-HDL-L, L-HDL-L/S- HDL-L, M-HDL-L/S-HDL-L	Enzymatic activity regulating lipid concentration in different HDL particle sizes ^{22,23} .
Fatty acid saturation	Bis/DB, Bis/FA, CH2/DB, CH2/FA, DB/FA,	Cardiovascular protection ²⁴ and risk for T2D ²⁵
Polyunsaturated fatty acid	DHA/FAw3, DHA/PUFA, FAw3/FA, FAw3/FAw67, FAw3/FAw9S, FAw67/FA, FAw67/FAw9S, FAw9S/FA, LA/DHA, LA/FAw67	Fatty acid saturation ratios linked with energy production, modulation of inflammation, and maintenance of cell membrane integrity ²⁶ and the risk for cardiovascular disease ²⁴ , T2D ²⁵ , renal failure ²⁷ , and mild cognitive impairment ⁹ .

Abbreviation	Model	ICC-MZ	ICC-DZ	A variance (95%CI)	D variance (95%CI)	C variance (95%CI)	E variance (95%CI)	Heritability (95%CI)	Variance explained
AcAcO	AE	0.506	0.24	0.497 (0.392 –0.606)	-	-	0.502 (0.425 –0.593)	0.497 (0.405 –0.578)	NA
AcO	CE	0.352	0.279	-	-	0.301 (0.220 –0.389)	0.697 (0.622 –0.783)	-	NA
AcO/AcAcO	AE	0.514	0.32	0.524 (0.424 –0.628)	-	-	0.471 (0.401 –0.555)	0.527 (0.442 –0.601)	NA
Ala	ACE	0.498	0.359	0.307 (0.054 –0.557)	-	0.185 (0.000 –0.379)	0.503 (0.422 –0.605)	0.308 (0.054 –0.553)	0.0056
Ala/Cit	ADE	0.543	0.186	0.196 (0.000 –0.573)	0.336 (0.000 –0.630)	-	0.464 (0.389 –0.557)	0.534 (0.440 –0.612)	0.0022
Ala/Glc	AE	0.52	0.339	0.540 (0.441 –0.643)	-	-	0.455 (0.388 –0.537)	0.542 (0.459 –0.614)	0.0075
Ala/Gln	ACE	0.67	0.42	0.525 (0.322 –0.735)	-	0.148 (0.000 –0.322)	0.327 (0.273 –0.395)	0.525 (0.324 –0.717)	0.031
Ala/His	AE	0.457	0.283	0.459 (0.361 –0.562)	-	-	0.533 (0.457 –0.623)	0.463 (0.374 –0.542)	0.018
Ala/Ile	AE	0.475	0.26	0.496 (0.390 –0.606)	-	-	0.506 (0.429 –0.598)	0.495 (0.402 –0.576)	NA
Ala/Leu	ACE	0.455	0.294	0.275 (0.002 –0.530)	-	0.161 (0.000 –0.375)	0.561 (0.473 –0.670)	0.276 (0.002 –0.519)	NA
Ala/Phe	AE	0.331	0.209	0.349 (0.243 –0.458)	-	-	0.650 (0.558 –0.758)	0.350 (0.248 –0.442)	0.0076
Ala/Pyr	AE	0.451	0.233	0.459 (0.352 –0.569)	-	-	0.542 (0.462 –0.639)	0.458 (0.362 –0.543)	NA
Ala/Tyr	AE	0.41	0.218	0.405 (0.300 –0.514)	-	-	0.592 (0.506 –0.694)	0.406 (0.308 –0.495)	0.003
Ala/Val	ACE	0.445	0.297	0.214 (0.000 –0.488)	-	0.202 (0.000 –0.412)	0.581 (0.492 –0.690)	0.215 (0.000 –0.483)	0.032
Alb	ACE	0.544	0.375	0.393 (0.150 –0.634)	-	0.165 (0.000 –0.355)	0.442 (0.368 –0.536)	0.393 (0.150 –0.620)	NA
ApoA1	AE	0.616	0.271	0.605 (0.500 –0.716)	_	_	0.396 (0.330 –0.476)	0.605 (0.521 –0.675)	0.058
АроВ	ADE	0.691	0.273	0.367 (0.000 –0.759)	0.338 (0.000 –0.757)	-	0.299 (0.247 –0.368)	0.702 (0.630 –0.758)	0.042
ApoB/ApoA1	ADE	0.787	0.298	0.407 (0.000 –0.812)	0.364 (0.000 –0.790)	-	0.221 (0.183 –0.271)	0.777 (0.724 –0.818)	0.077
BCAAs	AE	0.521	0.299	0.547 (0.443 –0.655)	-	-	0.455 (0.385 –0.540)	0.546 (0.459 –0.621)	0.0036
Bis/DB	AE	0.523	0.221	0.488 (0.385 –0.595)	-	-	0.507 (0.431 –0.598)	0.491 (0.399 –0.571)	0.104
Bis/FA	AE	0.507	0.26	0.489 (0.388 –0.596)	-	-	0.505 (0.430 –0.594)	0.492 (0.403 –0.571)	0.088
bOHBuO	AE	0.51	0.252	0.535 (0.422 –0.652)	-	-	0.472 (0.395 –0.566)	0.532 (0.435 –0.614)	NA
bOHBuO/AcAcO	AE	0.439	0.304	0.472 (0.364 –0.584)	-	-	0.526 (0.445 –0.623)	0.473 (0.376 –0.558)	NA
bOHBuO/AcO	AE	0.45	0.265	0.491 (0.378 –0.609)	-	-	0.514 (0.432 –0.613)	0.489 (0.389 –0.576)	NA
CH2/DB	AE	0.556	0.341	0.558 (0.460 –0.661)	-	-	0.434 (0.368 –0.513)	0.563 (0.481 –0.633)	0.048
CH2/FA	AE	0.374	0.217	0.392 (0.282 –0.505)	-	-	0.608 (0.517 –0.715)	0.392 (0.289 –0.486)	0.022
Cit	AE	0.539	0.251	0.536 (0.432 –0.644)	-	-	0.463 (0.392 –0.549)	0.536 (0.448 –0.612)	0.0005
Crea	ACE	0.584	0.372	0.412 (0.179 –0.647)	-	0.166 (0.000 –0.355)	0.418 (0.350 –0.504)	0.414 (0.180 –0.636)	NA
Crea/Alb	ACE	0.578	0.357	0.414 (0.176 –0.650)	-	0.158 (0.143 –0.650)	0.425 (0.355 –0.512)	0.416 (0.177 –0.635)	NA
DB/FA	AE	0.484	0.287	0.494 (0.391 –0.602)	-	-	0.503 (0.427 –0.593)	0.496 (0.405 –0.575)	0.044
DHA	AE	0.475	0.285	0.477 (0.376 –0.583)	-	-	0.518 (0.442 –0.609)	0.480 (0.389 –0.559)	NA
DHA/FAw3	AE	0.374	0.19	0.381 (0.270 –0.496)	-	-	0.619 (0.527 –0.729)	0.381 (0.276 –0.476)	NA
DHA/PUFA	ACE	0.446	0.326	0.282 (0.006 –0.546)	-	0.172 (0.000 –0.379)	0.545 (0.455 –0.658)	0.282 (0.006 –0.534)	0.0075
Est-C	AE	0.649	0.347	0.648 (0.551 –0.751)	-	-	0.348 (0.293 –0.416)	0.651 (0.579 –0.710)	0.057
FALen	AE	0.311	0.175	0.330 (0.215 –0.447)	-	-	0.671 (0.572 –0.789)	0.330 (0.219 –0.431)	NA
FAw3	AE	0.508	0.236	0.482 (0.379 –0.589)	-	-	0.514 (0.437 –0.605)	0.484 (0.393 –0.564)	0.017
FAw3/FA	AE	0.476	0.285	0.493 (0.388 –0.601)	-	-	0.506 (0.429 –0.598)	0.493 (0.401 –0.574)	0.028
FAw3/FAw67	AE	0.46	0.287	0.467 (0.365 –0.573)	_	_	0.528 (0.451 –0.621)	0.469 (0.378 –0.550)	0.03
FAw3/FAw9S	AE	0.493	0.286	0.509 (0.404 –0.618)	-	-	0.490 (0.415 –0.581)	0.509 (0.418 –0.589)	0.027
FAw67	AE	0.594	0.277	0.574 (0.473 –0.680)	_	-	0.423 (0.357 –0.502)	0.576 (0.493 –0.646)	0.048
FAw67/FA	ACE	0.463	0.325	0.251 (0.000 –0.521)	-	0.201 (0.000 -0.411)	0.546 (0.457 –0.655)	0.252 (0.000 –0.516)	NA
FAw67/FAw9S	CF	0.455	0.339	_	_	0.384 (0.300 -0.475)	0.614 (0.547 -0.692)	_	NA

Supplementary Table 3. Intraclass correlation coefficients for MZ and DZ twins, genetic and environmental raw variance estimates and heritability estimate for every phenotype.

Abbreviation	Model	ICC-MZ	ICC-DZ	A variance (95%CI)	D variance (95%CI)	C variance (95%CI)	E variance (95%CI)	Heritability (95%CI)	Variance explained
FAw9S	AE	0.543	0.292	0.530 (0.430 –0.635)	-	-	0.464 (0.394 –0.547)	0.533 (0.448 –0.607)	0.022
FAw9S/FA	ACE	0.476	0.326	0.280 (0.011 –0.545)	-	0.185 (0.000 –0.393)	0.532 (0.445 –0.639)	0.281 (0.011 –0.537)	NA
FR	CE	0.416	0.319	-	-	0.359 (0.274 –0.450)	0.640 (0.570 –0.722)	-	0.0082
Free-C	AE	0.641	0.33	0.644 (0.545 –0.749)	-	-	0.356 (0.299 –0.426)	0.644 (0.570 –0.706)	0.05
Free-C/Est-C	AE	0.486	0.168	0.438 (0.334 –0.546)	-	-	0.556 (0.475 –0.654)	0.440 (0.345 –0.526)	0.0044
Glc	ACE	0.492	0.373	0.253 (0.000 –0.505)	-	0.239 (0.036 –0.436)	0.507 (0.425 –0.610)	0.253 (0.000 –0.501)	0.013
Glc/Cit	AE	0.564	0.353	0.580 (0.482 –0.683)	-	-	0.414 (0.351 –0.490)	0.584 (0.505 –0.651)	0.0006
Glc/Pyr	AE	0.542	0.305	0.561 (0.459 –0.668)	-	-	0.440 (0.373 –0.522)	0.560 (0.476 –0.633)	0.021
Gln	AE	0.527	0.297	0.547 (0.445 –0.654)	-	-	0.454 (0.384 –0.537)	0.547 (0.461 –0.621)	0.014
Gln/Cit	AE	0.481	0.283	0.525 (0.418 –0.637)	-	-	0.477 (0.403 –0.568)	0.524 (0.432 –0.604)	NA
Gln/Glc	ACE	0.497	0.343	0.279 (0.020 –0.537)	-	0.209 (0.000 -0.412)	0.511 (0.429 –0.613)	0.279 (0.020 –0.533)	0.0026
Gln/His	ACE	0.504	0.372	0.339 (0.087 –0.590)	-	0.211 (0.007 –0.407)	0.459 (0.381 –0.557)	0.336 (0.086 –0.578)	0.021
Gln/Ile	AE	0.587	0.314	0.593 (0.494 –0.698)	-	-	0.406 (0.343 –0.481)	0.594 (0.515 –0.661)	0.037
Gln/Leu	AE	0.566	0.284	0.559 (0.459 –0.663)	-	-	0.438 (0.372 –0.518)	0.560 (0.478 –0.631)	0.0014
Gln/Phe	AE	0.516	0.241	0.533 (0.425 –0.644)	-	-	0.474 (0.400 –0.563)	0.529 (0.438 –0.608)	0.0013
Gln/Pyr	AE	0.499	0.31	0.548 (0.443 –0.657)	-	-	0.457 (0.387 –0.543)	0.545 (0.457 –0.621)	0.016
Gln/Tyr	AE	0.552	0.324	0.555 (0.457 –0.659)	-	-	0.439 (0.373 –0.519)	0.559 (0.477 –0.629)	0.0059
Gln/Val	ACE	0.546	0.376	0.339 (0.096 –0.582)	-	0.210 (0.009 –0.404)	0.452 (0.379 –0.545)	0.338 (0.096 –0.576)	0.016
Glol	ACE	0.567	0.431	0.331 (0.103 –0.559)	-	0.255 (0.066 –0.438)	0.415 (0.346 –0.502)	0.331 (0.103 –0.553)	NA
Gp	AE	0.541	0.298	0.527 (0.430 –0.629)	-	-	0.463 (0.395 –0.544)	0.532 (0.450 –0.605)	0.0023
Gp/Serum-TG	AE	0.635	0.288	0.626 (0.526 –0.731)	-	-	0.375 (0.316 –0.448)	0.625 (0.549 –0.689)	0.038
Gp/Tot-C	ACE	0.606	0.403	0.434 (0.208 –0.666)	-	0.185 (0.000 –0.371)	0.383 (0.318 –0.466)	0.433 (0.208 –0.657)	0.053
HDL2-C	AE	0.757	0.287	0.721 (0.627 –0.821)	-	-	0.275 (0.231 –0.330)	0.724 (0.664 –0.773)	0.059
HDL3-C	ADE	0.596	0.106	0.000 (0.000 -0.314)	0.565 (0.238 –0.669)	-	0.428 (0.360 –0.513)	0.569 (0.483 –0.641)	NA
HDL-C	AE	0.742	0.291	0.712 (0.617 –0.813)	-	-	0.286 (0.240 -0.343)	0.713 (0.652 –0.764)	0.059
HDL-D	AE	0.791	0.354	0.777 (0.686 –0.875)	-	-	0.222 (0.186 –0.267)	0.778 (0.728 –0.817)	0.077
His	ACE	0.417	0.293	0.229 (0.000 –0.497)	-	0.178 (0.000 –0.388)	0.590 (0.496 –0.704)	0.230 (0.000 –0.489)	0.0001
His/Ile	AE	0.534	0.27	0.541 (0.438 –0.649)	-	-	0.460 (0.390 –0.545)	0.540 (0.454 –0.615)	0.057
His/Leu	ACE	0.567	0.383	0.292 (0.058 –0.530)	-	0.248 (0.049 –0.440)	0.454 (0.382 –0.544)	0.294 (0.058 –0.528)	NA
His/Phe	AE	0.494	0.179	0.442 (0.342 –0.547)	-	-	0.551 (0.473 –0.644)	0.445 (0.354 –0.527)	0.0084
His/Tyr	ACE	0.417	0.291	0.235 (0.000 –0.508)	-	0.180 (0.000 –0.395)	0.585 (0.491 –0.702)	0.235 (0.000 –0.497)	0.006
His/Val	CE	0.443	0.318	-	-	0.380 (0.295 –0.472)	0.622 (0.554 –0.701)	-	0.0017
IDL-C	AE	0.635	0.341	0.657 (0.558 –0.762)	-	-	0.347 (0.292 –0.415)	0.654 (0.582 –0.714)	0.075
IDL-C-eFR	ADE	0.702	0.262	0.307 (0.000 –0.698)	0.402 (0.018 –0.772)	-	0.293 (0.244 –0.356)	0.708 (0.642 –0.760)	0.043
IDL-FC	AE	0.57	0.357	0.609 (0.509 –0.715)	-	-	0.392 (0.331 –0.467)	0.608 (0.531 –0.674)	0.086
IDL-L	AE	0.629	0.344	0.657 (0.557 –0.762)	-	-	0.348 (0.293 –0.417)	0.653 (0.581 –0.714)	0.095
IDL-P	AE	0.633	0.348	0.662 (0.562 –0.767)	-	-	0.344 (0.289 –0.412)	0.658 (0.586 –0.718)	0.095
IDL-PL	AE	0.618	0.363	0.658 (0.558 –0.762)	-	-	0.348 (0.293 –0.416)	0.654 (0.582 –0.714)	0.071
IDL-TG	AE	0.648	0.283	0.656 (0.554 –0.764)	-	-	0.354 (0.296 –0.424)	0.650 (0.575 –0.712)	0.048
lle	AE	0.496	0.26	0.509 (0.403 –0.620)	-	-	0.493 (0.417 –0.584)	0.508 (0.416 –0.589)	0.033
Ile/Glc	AE	0.466	0.288	0.499 (0.394 –0.608)	-	-	0.502 (0.426 –0.593)	0.498 (0.406 –0.579)	0.038
Ile/Leu	AE	0.503	0.251	0.498 (0.395 –0.605)	-	_	0.501 (0.426 –0.590)	0.499 (0.409 –0.578)	NA
Ile/Phe	AE	0.469	0.232	0.488 (0.378 -0.601)	-	-	0.517 (0.438 –0.613)	0.485 (0.388 –0.570)	0.036
Ile/Serum-C	AE	0.526	0.296	0.556 (0.451 –0.666)	-	-	0.448 (0.377 –0.533)	0.554 (0.466 –0.629)	0.011
Ile/Serum-TG	AE	0.523	0.259	0.532 (0.426 –0.641)	-	-	0.471 (0.398 –0.559)	0.530 (0.440 -0.608)	0.042
lle/Tyr	AE	0.522	0.203	0.488 (0.384 –0.597)	-	-	0.509 (0.433 –0.601)	0.489 (0.397 –0.571)	0.025
Ile/Val	AE	0.46	0.205	0.425 (0.324 –0.531)	-	-	0.570 (0.488 –0.666)	0.428 (0.334 –0.512)	NA

Abbreviation	Model	ICC-MZ	ICC-DZ	A variance (95%CI)	D variance (95%CI)	C variance (95%CI)	E variance (95%CI)	Heritability (95%CI)	Variance explained
LA	AE	0.645	0.267	0.619 (0.519 –0.725)	-	-	0.380 (0.319 –0.453)	0.620 (0.542 –0.685)	0.053
LA/DHA	AE	0.494	0.326	0.519 (0.418 –0.625)	-	-	0.477 (0.405 –0.564)	0.521 (0.434 –0.597)	0.027
LA/FAw67	ACE	0.46	0.371	0.257 (0.000 –0.521)	-	0.238 (0.030 –0.442)	0.509 (0.422 –0.621)	0.256 (0.000 –0.513)	0.101
LA/PUFA	AE	0.614	0.364	0.616 (0.520 –0.718)	-	-	0.377 (0.319 –0.447)	0.621 (0.546 –0.683)	0.251
Lac	ACE	0.468	0.325	0.255 (0.000 –0.521)	-	0.203 (0.000 –0.411)	0.540 (0.453 –0.647)	0.255 (0.000 –0.517)	NA
Lac/Ala	AE	0.506	0.276	0.506 (0.404 –0.612)	-	-	0.489 (0.417 –0.577)	0.508 (0.420 –0.585)	NA
Lac/Cit	AE	0.389	0.23	0.384 (0.282 –0.490)	-	-	0.612 (0.526 –0.713)	0.386 (0.289 –0.473)	0.0029
Lac/Glc	AE	0.55	0.267	0.539 (0.438 –0.644)	-	-	0.458 (0.389 –0.541)	0.541 (0.455 –0.614)	NA
Lac/Gin	ACE	0.436	0.333	0.217 (0.000 -0.486)	-	0.223 (0.011 -0.427)	0.560 (0.469 -0.673)	0.217 (0.000 -0.482)	0.0029
	AE	0.522	0.248	0.524 (0.419 - 0.633)	_	_	0.477(0.404 - 0.565)	0.523 (0.433 -0.601)	NA 0.077
	AE	0.603	0.344	0.622 (0.523 -0.726)	_	_	0.378 (0.319 -0.450)	0.622 (0.546 -0.686)	0.073
	A.C.	0.005	0.344	0.022 (0.323 0.720)			0.576 (0.315 0.436)	0.022 (0.347 0.000)	0.011
LDL-D	AE	0.424	0.206	0.414 (0.308 – 0.523)	-	-	0.584 (0.499 –0.685)	0.415 (0.317 -0.503)	0.011
Leu	AE	0.51	0.285	0.516 (0.414 –0.623)	-	-	0.482 (0.409 –0.569)	0.517 (0.429 –0.594)	NA
Leu/Glc	AE	0.517	0.328	0.534 (0.434 –0.638)	-	-	0.462 (0.393 –0.544)	0.536 (0.452 –0.609)	NA
Leu/Phe	AE	0.433	0.295	0.458 (0.356 –0.564)	-	-	0.538 (0.460 –0.631)	0.460 (0.368 –0.541)	NA
Leu/Serum-TG	AE	0.568	0.267	0.561 (0.458 –0.668)	-	-	0.439 (0.372 –0.521)	0.561 (0.476 –0.633)	0.022
Leu/Tyr	AE	0.412	0.191	0.389 (0.285 –0.497)	-	-	0.607 (0.520 –0.709)	0.391 (0.293 –0.480)	NA
Leu/Val	AE	0.387	0.223	0.373 (0.272 –0.476)	-	-	0.622 (0.536 –0.723)	0.375 (0.280 –0.461)	0.021
L-HDL-C	AE	0.778	0.302	0.754 (0.661 –0.854)	-	-	0.247 (0.207 –0.297)	0.753 (0.699 –0.798)	0.084
L-HDL-C/L-HDL-PL	AE	0.678	0.327	0.664 (0.568 –0.765)	-	-	0.332 (0.279 –0.396)	0.667 (0.599 –0.724)	0.013
L-HDL-CE	AE	0.77	0.299	0.744 (0.651 –0.845)	_	_	0.256 (0.214 -0.307)	0.744 (0.688 –0.790)	0.086
L-HDL-FC	AE	0.783	0.301	0.758 (0.665 –0.858)	_	_	0.242 (0.203 –0.292)	0.758 (0.704 –0.801)	0.076
I-HDI-I	ΔF	0 778	0.31	0 754 (0 662 -0 854)	_	_	0 245 (0 205 -0 295)	0 755 (0 700 -0 799)	0.083
	AE	0.796	0.244	0.787 (0.696 -0.887)	_	_	0.216 (0.181 -0.261)	0.785 (0.726 -0.824)	0.099
	A.C.	0.750	0.344	0.707 (0.090 0.007)			0.220 (0.101 0.201)	0.700 (0.730 0.024)	0.005
L-HDL-L/S-HDL-L	AE	0.793	0.349	0.780 (0.689 –0.878)	-	-	0.220 (0.184 –0.265)	0.780 (0.730 –0.819)	0.087
L-HDL-P	AE	0.776	0.31	0.751 (0.659 –0.851)	-	-	0.248 (0.207 –0.298)	0.752 (0.697 –0.796)	0.081
L-HDL-PL	AE	0.773	0.312	0.745 (0.652 –0.844)	-	-	0.252 (0.211 –0.303)	0.747 (0.692 –0.792)	0.083
L-LDL-C	AE	0.63	0.366	0.674 (0.575 –0.779)	-	-	0.334 (0.280 –0.400)	0.669 (0.598 –0.727)	0.079
L-LDL-CE	AE	0.637	0.343	0.672 (0.571 –0.777)	-	-	0.337 (0.283 –0.405)	0.666 (0.594 –0.725)	0.076
L-LDL-FC	AE	0.598	0.365	0.652 (0.552 –0.758)	-	-	0.355 (0.299 –0.426)	0.647 (0.573 –0.709)	0.08
L-LDL-L	AE	0.638	0.371	0.686 (0.587 –0.791)	-	-	0.323 (0.271 –0.388)	0.680 (0.611 –0.736)	0.078
L-LDL-P	AE	0.644	0.369	0.690 (0.591 –0.795)	-	-	0.319 (0.268 –0.383)	0.684 (0.615 –0.740)	0.077
L-LDL-PL	AE	0.638	0.363	0.685 (0.586 –0.791)	-	-	0.325 (0.272 –0.390)	0.678 (0.609 –0.735)	0.079
L-VLDL-C	AE	0.579	0.253	0.550 (0.449 –0.656)	-	-	0.446 (0.378 –0.529)	0.552 (0.467 –0.625)	0.035
L-VLDL-CE	AE	0.596	0.237	0.563 (0.461 –0.671)	_	_	0.435 (0.367 –0.517)	0.564 (0.480 –0.637)	0.04
L-VLDL-FC	AF	0.572	0.265	0.544 (0.444 -0.650)	_	_	0.450 (0.382 -0.533)	0.547 (0.463 -0.620)	0.036
L-VLDL-L	AF	0.584	0.247	0.557 (0.455 -0.665)	_	_	0.441 (0.372 -0 523)	0.558 (0.473 -0.632)	0.027
	ΛΕ	0 507	0.262	0.559 (0.457 -0.665)	_	_	0.438 (0.370 -0.510)	0.561 (0.477 -0.622)	0.024
	AE	0.585	0.202	0.555 (0.457 -0.005)	-	-	0.430 (0.370 -0.519)	0.501 (0.477 -0.053)	0.024
	AL	0.585	0.249	0.500 (0.457 -0.667)	-	-	0.438 (0.370 -0.521)	0.561 (0.476 -0.634)	0.027
L-VLDL-TG	AE	0.585	0.255	0.562 (0.459 -0.669)	-	-	0.436 (0.369 -0.518)	0.563 (0.478 -0.635)	0.011
	ADE	0.658	0.23	0.277 (0.000 - 0.666)	0.354 (0.000 -0.705)	-	0.355 (0.298 - 0.426)	0.608 (0.528 0.675)	0.018
M-HDL-C/M-HDL-PL	AE	0.615	0.269	0.610 (0.508 -0.717)	-	-	0.394 (0.331 -0.470)	0.608 (0.528 -0.675)	0.018

Abbreviation	Model	ICC-MZ	ICC-DZ	A variance (95%CI)	D variance (95%CI)	C variance (95%CI)	E variance (95%CI)	Heritability (95%CI)	Variance explained
M-HDL-CE	ADE	0.661	0.222	0.258 (0.000 –0.653)	0.367 (0.000 –0.702)	-	0.362 (0.304 –0.435)	0.633 (0.557 –0.695)	0.019
M-HDL-FC	AE	0.667	0.265	0.627 (0.529 –0.730)	-	-	0.366 (0.309 –0.436)	0.631 (0.557 –0.694)	0.014
M-HDL-L	AE	0.646	0.25	0.604 (0.505 –0.708)	-	-	0.389 (0.329 –0.463)	0.608 (0.530 –0.674)	0.01
M-HDL-L/S-HDL-L	AE	0.674	0.314	0.641 (0.546 –0.741)	-	-	0.349 (0.295 –0.414)	0.647 (0.578 –0.706)	0.024
M-HDL-P	AE	0.632	0.253	0.592 (0.493 –0.697)	-	-	0.400 (0.338 –0.475)	0.597 (0.518 –0.664)	0.0073
M-HDL-PL	AE	0.641	0.262	0.601 (0.503 –0.704)	-	-	0.391 (0.330 –0.464)	0.606 (0.529 –0.672)	0.0081
M-LDL-C	AE	0.624	0.355	0.665 (0.565 –0.771)	-	-	0.343 (0.288 –0.411)	0.660 (0.587 –0.719)	0.073
M-LDL-C/M-LDL-PL	ACE	0.486	0.362	0.307 (0.047 –0.562)	-	0.202 (0.000 –0.399)	0.494 (0.411 –0.598)	0.306 (0.047 –0.554)	0.053
M-LDL-CE	AE	0.624	0.358	0.665 (0.565 –0.771)	-	-	0.342 (0.287 –0.410)	0.660 (0.588 –0.720)	0.073
M-LDL-L	AE	0.633	0.356	0.675 (0.575 –0.781)	-	-	0.334 (0.280 –0.401)	0.669 (0.598 –0.728)	0.074
M-LDL-P	AE	0.637	0.354	0.681 (0.580 –0.786)	-	-	0.330 (0.276 –0.396)	0.674 (0.603 –0.732)	0.073
M-LDL-PL	AE	0.658	0.313	0.675 (0.574 –0.781)	-	-	0.334 (0.280 –0.402)	0.669 (0.597 –0.728)	0.067
MobCH	AE	0.581	0.218	0.547 (0.445 –0.654)	-	-	0.452 (0.383 –0.535)	0.548 (0.462 –0.622)	0.043
MobCH2	AE	0.558	0.254	0.533 (0.432 –0.639)	-	-	0.463 (0.393 –0.547)	0.535 (0.450 –0.610)	0.024
MobCH3	AE	0.593	0.231	0.555 (0.454 –0.660)	-	-	0.442 (0.375 –0.522)	0.557 (0.473 –0.629)	0.054
M-VLDL-C	AE	0.644	0.252	0.598 (0.499 –0.701)	-	-	0.396 (0.335 –0.470)	0.601 (0.524 –0.668)	0.053
M-VLDL-CE	AE	0.662	0.267	0.620 (0.522 –0.723)	-	-	0.374 (0.316 –0.444)	0.624 (0.549 –0.687)	0.065
M-VLDL-FC	AE	0.629	0.241	0.582 (0.483 –0.687)	-	-	0.412 (0.349 –0.488)	0.586 (0.506 –0.654)	0.038
M-VLDL-L	AE	0.628	0.238	0.586 (0.486 –0.691)	-	-	0.410 (0.347 –0.487)	0.588 (0.508 –0.657)	0.035
M-VLDL-P	AE	0.624	0.241	0.585 (0.485 –0.690)	-	_	0.412 (0.348 –0.489)	0.587 (0.506 –0.656)	0.034
M-VLDL-PL	AE	0.64	0.245	0.602 (0.502 –0.707)	-	-	0.395 (0.334 –0.470)	0.604 (0.525 –0.671)	0.038
M-VLDL-TG	AE	0.615	0.246	0.578 (0.478 –0.684)	-	-	0.418 (0.354 –0.496)	0.580 (0.499 –0.650)	0.031
PC	AE	0.59	0.266	0.579 (0.476 –0.687)	-	-	0.420 (0.354 –0.501)	0.580 (0.496 –0.651)	0.032
PC/Tot-CH	CE	0.317	0.314	-	-	0.322 (0.237 –0.415)	0.680 (0.605 –0.767)	-	NA
Phe	AE	0.402	0.194	0.387 (0.283 –0.495)	-	-	0.610 (0.523 –0.712)	0.389 (0.291 –0.477)	0.016
Phe/Tyr	AE	0.354	0.24	0.392 (0.282 –0.504)	-	-	0.609 (0.520 –0.716)	0.391 (0.289 –0.483)	0.0093
Phe/Val	ACE	0.408	0.269	0.222 (0.000 -0.493)	-	0.174 (0.000 –0.391)	0.604 (0.509 –0.721)	0.222 (0.000 -0.482)	0.027
PUFA	AE	0.621	0.307	0.617 (0.517 –0.723)	-	-	0.382 (0.322 –0.456)	0.618 (0.540 –0.683)	0.076
Pyr	AE	0.49	0.33	0.522 (0.421 –0.627)	-	-	0.476 (0.405 –0.560)	0.523 (0.437 –0.598)	0.018
Pyr/Cit	AE	0.491	0.161	0.451 (0.344 –0.563)	-	-	0.548 (0.465 –0.647)	0.452 (0.354 –0.539)	NA
Serum-C	AE	0.657	0.321	0.659 (0.560 –0.763)	-	-	0.343 (0.289 –0.411)	0.657 (0.586 –0.717)	0.051
Serum-TG	AE	0.639	0.255	0.611 (0.510 -0.717)	-	-	0.388 (0.327 –0.463)	0.611 (0.533 –0.678)	0.039
Serum-TG/Glc	AE	0.564	0.272	0.556 (0.454 -0.663)	-	-	0.443 (0.375 -0.526)	0.557 (0.472 -0.630)	0.034
S-HDL-L	AE	0.6	0.274	0.606 (0.502 -0.715)	-	-	0.398 (0.335 -0.476)	0.603 (0.522 –0.672)	0.0024
S-HDL-P	ADE	0.591	0.218	0.259 (0.000 -0.638)	0.335 (0.000 –0.679)	-	0.405 (0.338 -0.489)	0.595 (0.508 –0.665)	0.0028
S-HDL-TG	AE	0.665	0.336	0.661 (0.564 -0.763)	-	-	0.337 (0.284 –0.402)	0.662 (0.593 –0.720)	0.067
S-LDL-C	AE	0.608	0.349	0.657 (0.555 -0.764)	_	_	0.353 (0.296 -0.423)	0.651 (0.576 -0.712)	0.057
S-LDL-L	AE	0.616	0.341	0.659 (0.558 –0.766)	-	-	0.350 (0.294 –0.421)	0.653 (0.579 –0.714)	0.05
S-LDL-P	AE	0.633	0.341	0.663 (0.563 -0.769)	_	_	0.344 (0.289 –0.412)	0.658 (0.586 -0.718)	0.056
SM	AE	0.555	0.339	0.570 (0.471 –0.673)	_	_	0.425 (0.360 -0.503)	0.573 (0.492 –0.642)	0.0044
S-VLDL-C	AE	0.723	0.282	0.696 (0.600 –0.799)	_	_	0.304 (0.255 -0.364)	0.696 (0.631 -0.750)	0.022
S-VLDL-FC	ADE	0.71	0.255	0.359 (0.000 -0.742)	0.329 (0.000 -0.737)	-	0.305 (0.255 -0.368)	0.693 (0.627 -0.747)	0.07
S-VLDL-L	ADE	0.706	0.236	0.275 (0.000 -0.683)	0.413 (0.011 -0.760)	_	0.307 (0.256 -0.371)	0.691 (0.625 -0.745)	0.071
S-VLDL-P	ADE	0.691	0.233	0.276 (0.000 -0.684)	0.393 (0.000 -0.743)	_	0.324 (0.271 -0.391)	0.674 (0.604 -0.730)	0.062
S-VLDL-PL	ADE	0.705	0.239	0.287 (0.000 -0.695)	0.404 (0.003 -0.761)	-	0.305 (0.255 -0.369)	0.694 (0.627 -0.747)	0.081
S-VLDL-TG	AE	0.664	0.259	0.630 (0.532 –0.734)	_	_	0.367 (0.310 -0.438)	0.632 (0.557 -0.694)	0.054
TG/PG	AE	0.521	0.24	0.507 (0.401 –0.617)	-	-	0.491 (0.415 -0.582)	0.508 (0.416 -0.588)	0.002

Abbreviation	Model	ICC-MZ	ICC-DZ	A variance (95%CI)	D variance (95%CI)	C variance (95%CI)	E variance (95%CI)	Heritability (95%CI)	Variance explained
Tot-C	AE	0.658	0.352	0.659 (0.562 –0.762)	-	-	0.338 (0.284 –0.404)	0.661 (0.591 –0.720)	0.052
Tot-C/Est-C	AE	0.483	0.165	0.435 (0.330 –0.543)	-	-	0.560 (0.478 –0.658)	0.437 (0.341 –0.523)	0.0048
Tot-CH	AE	0.583	0.286	0.582 (0.480 –0.690)	-	-	0.417 (0.351 –0.497)	0.583 (0.500 –0.653)	0.037
Tot-FA	AE	0.567	0.281	0.544 (0.444 –0.649)	-	-	0.449 (0.381 –0.531)	0.548 (0.464 –0.620)	0.027
Tot-PG	AE	0.57	0.283	0.568 (0.465 –0.676)	-	-	0.430 (0.362 –0.512)	0.569 (0.484 –0.642)	NA
Tot-TG	AE	0.535	0.247	0.516 (0.411 –0.625)	-	-	0.482 (0.408 –0.571)	0.517 (0.426 –0.596)	0.017
Tyr	AE	0.362	0.247	0.388 (0.283 –0.497)	-	-	0.609 (0.521 –0.713)	0.389 (0.290 –0.479)	0.0044
Tyr/Val	CE	0.368	0.283	-	-	0.310 (0.229 –0.398)	0.687 (0.613 –0.773)	-	0.024
Urea	AE	0.481	0.195	0.435 (0.333 –0.541)	-	-	0.558 (0.478 –0.654)	0.438 (0.345 –0.522)	NA
Val	AE	0.429	0.277	0.445 (0.343 –0.552)	-	-	0.551 (0.472 –0.646)	0.447 (0.354 –0.530)	0.024
Val/Glc	ACE	0.408	0.316	0.259 (0.000 –0.528)	-	0.171 (0.000 –0.380)	0.571 (0.476 –0.691)	0.258 (0.000 –0.516)	0.0029
Val/Serum-TG	AE	0.553	0.226	0.528 (0.424 –0.636)	-	-	0.471 (0.399 –0.558)	0.528 (0.440 –0.605)	0.027
VLDL-D	AE	0.543	0.268	0.529 (0.428 –0.635)	-	-	0.467 (0.397 –0.551)	0.531 (0.445 –0.606)	0.0075
VLDL-TG	AE	0.627	0.247	0.594 (0.493 –0.701)	-	-	0.404 (0.341 –0.481)	0.595 (0.515 –0.664)	0.035
VLDL-TG-eFR	AE	0.639	0.28	0.616 (0.516 –0.721)	-	-	0.382 (0.322 –0.455)	0.617 (0.541 –0.682)	0.037
XL-HDL-C	AE	0.685	0.303	0.684 (0.585 –0.789)	-	-	0.322 (0.270 –0.386)	0.680 (0.611 –0.737)	0.05
XL-HDL-CE	AE	0.697	0.294	0.698 (0.598 –0.803)	-	-	0.311 (0.260 -0.374)	0.692 (0.624 –0.747)	0.049
XL-HDL-FC	AE	0.72	0.286	0.698 (0.601 –0.801)	-	-	0.303 (0.254 –0.364)	0.697 (0.632 –0.751)	0.06
XL-HDL-L	AE	0.737	0.301	0.721 (0.625 –0.823)	-	-	0.282 (0.236 -0.339)	0.719 (0.657 –0.769)	0.068
XL-HDL-L/L-HDL-L	AE	0.572	0.201	0.532 (0.429 –0.640)	-	-	0.466 (0.394 –0.552)	0.533 (0.445 –0.610)	0.001
XL-HDL-L/M-HDL-L	AE	0.702	0.275	0.690 (0.591 –0.794)	-	-	0.316 (0.265 –0.380)	0.686 (0.617 –0.742)	0.033
XL-HDL-L/S-HDL-L	AE	0.742	0.291	0.733 (0.637 –0.836)	-	-	0.274 (0.229 –0.331)	0.728 (0.667 –0.777)	0.06
XL-HDL-P	AE	0.746	0.291	0.727 (0.631 –0.829)	-	-	0.277 (0.231 –0.333)	0.724 (0.663 –0.774)	0.074
XL-HDL-PL	ADE	0.752	0.286	0.442 (0.028 –0.798)	0.288 (0.000 –0.707)	-	0.262 (0.219 –0.317)	0.736 (0.678 –0.782)	0.076
XL-HDL-TG	AE	0.626	0.366	0.643 (0.546 –0.746)	-	-	0.355 (0.300 –0.423)	0.644 (0.573 –0.704)	0.091
XL-VLDL-L	AE	0.553	0.268	0.529 (0.429 –0.635)	-	-	0.465 (0.395 –0.550)	0.532 (0.446 –0.607)	0.02
XL-VLDL-P	AE	0.557	0.263	0.529 (0.429 –0.634)	-	-	0.465 (0.395 –0.549)	0.532 (0.447 –0.607)	0.018
XL-VLDL-PL	AE	0.551	0.268	0.519 (0.420 –0.623)	-	-	0.473 (0.403 –0.557)	0.523 (0.438 –0.598)	0.02
XL-VLDL-TG	AE	0.548	0.267	0.524 (0.423 –0.629)	-	-	0.470 (0.400 –0.555)	0.527 (0.441 –0.602)	0.019
XS-VLDL-L	AE	0.626	0.26	0.608 (0.507 –0.714)	-	-	0.393 (0.331 –0.469)	0.607 (0.528 –0.674)	0.037
XS-VLDL-P	AE	0.627	0.257	0.612 (0.510 –0.719)	-	-	0.391 (0.329 –0.467)	0.610 (0.530 –0.677)	0.054
XS-VLDL-PL	AE	0.617	0.306	0.624 (0.523 –0.730)	-	-	0.379 (0.319 –0.452)	0.622 (0.545 –0.687)	0.082
XS-VLDL-TG	ADE	0.668	0.23	0.260 (0.000 –0.667)	0.408 (0.003 –0.747)	-	0.332 (0.277 –0.402)	0.668 (0.595 –0.726)	0.051
XXL-VLDL-L	AE	0.526	0.288	0.510 (0.411 –0.615)	-	-	0.482 (0.411 –0.568)	0.514 (0.428 –0.590)	0.018
XXL-VLDL-P	AE	0.454	0.311	0.493 (0.390 –0.601)	-	-	0.504 (0.429 –0.595)	0.495 (0.404 –0.574)	0.0054
XXL-VLDL-PL	AE	0.541	0.264	0.505 (0.406 –0.608)	-	-	0.486 (0.415 –0.571)	0.509 (0.424 –0.585)	0.02
XXL-VLDL-TG	AE	0.517	0.297	0.508 (0.408 –0.612)	_	-	0.485 (0.413 –0.571)	0.511 (0.425 –0.587)	0.019

Supplementary Table 4. Sample demographics for the subsample of twin used for the heritability estimate comparison.

	MZ twins (n=106)	DZ twins(n=150)
Age (years old)	28.7 ± 3.1	28.2 ± 1.8
Sex (# men)	54	86
BMI (kg/m ²)	26.2 ± 4.8	24.4 ± 4.2

Note: The sample consist of 106 MZ and 150 DZ twins, 65 of which were evaluated in our previous round of heritability analyses.

Supplementary Table 5. Comparison of heritability estimates of NMR measured lipids and enzymatically measured lipids in 256 twins.

	Enzymatic lipid measures				NMR lipid measures					
	ICC-	ICC-	A variance	E variance	Heritability	ICC-	ICC-	A variance	E variance	Heritability
Trait	MZ	DZ	(95%CI)	(95%CI)	(95%CI)	MZ	DZ	(95%CI)	(95%CI)	(95%CI)
HDL-C	0.678	0.306	0.665	0.318	0.677	0.643	0.282	0.602	0.386	0.609
			(0.473 – 0.895)	(0.227 – 0.455)	(0.530 – 0.779)			(0.393 – 0.846)	(0.272 – 0.560)	(0.431 – 0.737)
LDL-C	0.634	0.435	0.731	0.282	0.722	0.591	0.441	0.734	0.286	0.720
			(0.525 – 0.976)	(0.197 – 0.416)	(0.578 – 0.815)			(0.518 – 0.987)	(0.196 – 0.432)	(0.565 – 0.818)
TC	0.702	0.372	0.723	0.283	0.719	0.724	0.380	0.830	0.213	0.796
			(0.521 – 0.964)	(0.199 – 0.414)	(0.577 – 0.813)			(0.614 - 1.000)	(0.144 – 0.330)	(0.669 – 0.870)
TG	0.526	0.343	0.550	0.445	0.553	0.650	0.318	0.693	0.324	0.681
			(0.340 – 0.790)	(0.319 – 0.633)	(0.366 – 0.691)			(0.466 – 0.954)	(0.221 – 0.490)	(0.506 – 0.795)

A refers to additive genetic influences; E refers to specific environmental influences; 95%CI stands for 95% confidence intervals of the given estimate; heritability refers to broad sense heritability estimate.

Abbreviation	Lambda	Abbreviation	Lambda
AcAcO	1.03	L-LDL-P	1.02
AcO	1.02	L-LDL-PL	1.02
Ala	1.03	L-VLDL-C	1.04
Alb	1.02	L-VLDL-CE	1.04
bOHBuO	1.05	L-VLDL-FC	1.03
Cit	1.03	L-VLDL-L	1.03
Crea	1.02	L-VLDL-P	1.03
DHA	1.03	L-VLDL-PL	1.03
Est-C	1.01	L-VLDL-TG	1.03
FAw3	1.03	M-HDL-C	1.01
FAw67	1.01	M-HDL-CE	1.01
FAw9S	1.02	M-HDL-FC	1.02
Free-C	1.02	M-HDL-L	1.01
Glc	1.05	M-HDL-P	1.02
Gln	1.02	M-HDL-PL	1.02
Glol	1.03	M-LDL-C	1.02
Gp	1.04	M-LDL-CE	1.02
HDL-C	1.03	M-LDL-L	1.02
His	1.02	M-LDL-P	1.02
IDL-C	1.03	M-LDL-PL	1.02
IDL-FC	1.03	MobCH	1.03
IDL-L	1.02	MobCH2	1.03
IDL-P	1.02	MobCH3	1.02
IDL-PL	1.02	M-VLDL-C	1.02
IDL-TG	1.03	M-VLDL-CE	1.02
Ile	1.04	M-VLDL-FC	1.02
LA	1.01	M-VLDL-L	1.02
Lac	1.04	M-VLDL-P	1.02
LDL-C	1.02	M-VLDL-PL	1.02
Leu	1.02	M-VLDL-TG	1.03
L-HDL-C	1.04	PC	1
L-HDL-CE	1.04	Phe	1.03
L-HDL-FC	1.04	PUFA	1.03
L-HDL-L	1.04	Pyr	1.01
L-HDL-P	1.04	Serum-C	1.02
L-HDL-PL	1.04	Serum-TG	1.03
L-LDL-C	1.02	S-HDL-L	1.01
L-LDL-CE	1.02	S-HDL-P	1.01
L-LDL-FC	1.02	S-HDL-TG	1.02

Supplementary Table 6. Genome wide inflation factors from the meta-analysis for each trait.

Abbreviation	Lambda	Abbreviation	Lambda
L-LDL-L	1.02	S-LDL-C	1.02
S-LDL-L	1.02	Ala/Ile	1.03
S-LDL-P	1.02	Ala/Leu	1.03
SM	1.02	Ala/Phe	1.04
S-VLDL-C	1.02	Ala/Pyr	1.01
S-VLDL-FC	1.03	Ala/Tyr	1.03
S-VLDL-L	1.03	Ala/Val	1.03
S-VLDL-P	1.03	ApoA1	1.01
S-VLDL-PL	1.03	АроВ	1.02
S-VLDL-TG	1.03	АроВ/АроА1	1.04
Tot-C	1.02	BCAAs	1.03
Tot-CH	1	Bis/DB	1.03
Tot-FA	1.01	Bis/FA	1.03
Tot-PG	1.01	bOHBuO/AcAcO	1.01
Tot-TG	1.03	bOHBuO/AcO	1.01
Tyr	1.03	CH2/DB	1.03
Urea	1	CH2/FA	1.02
Val	1.03	Crea/Alb	1.03
VLDL-TG	1.03	DB/FA	1.03
XL-HDL-C	1.01	DHA/FAw3	1.01
XL-HDL-CE	1.01	DHA/PUFA	1.02
XL-HDL-FC	1.02	FALen	1.01
XL-HDL-L	1.02	FAw3/FAw67	1.03
XL-HDL-P	1.03	FAw3/FAw9S	1.03
XL-HDL-PL	1.03	FAw3/FA	1.03
XL-HDL-TG	1.02	FAw67/FAw9S	1.03
XL-VLDL-L	1.03	FAw67/FA	1.03
XL-VLDL-P	1.03	FAw9S/FA	1.03
XL-VLDL-PL	1.03	FR	1.03
XL-VLDL-TG	1.03	Free-C/Est-C	1
XS-VLDL-L	1.03	Glc/Cit	1.05
XS-VLDL-P	1.03	Glc/Pyr	0.99
XS-VLDL-PL	1.03	Gln/Cit	1.04
XS-VLDL-TG	1.03	Gln/Glc	1.03
XXL-VLDL-L	1.03	Gln/His	1.01
XXL-VLDL-P	1.05	Gln/Ile	1.03
XXL-VLDL-PL	1.04	Gln/Leu	1.01
XXL-VLDL-TG	1.03	Gln/Phe	1.03
AcO/AcAcO	1.01	Gln/Pyr	1.02

Abbreviation	Lambda	Abbreviation	Lambda
Ala/Cit	1.06	Lac/Gln	1.04
Ala/Glc	1.03	Lac/Pyr	1.02
Ala/Gln	1.02	LDL-C-eFR	1.03
Ala/His	1.01	LDL-D	1.01
Gln/Tyr	1.03	Leu/Glc	1.03
Gln/Val	1.02	Leu/Phe	1.03
Gp/Serum-TG	1.04	Leu/Serum-TG	1.03
Gp/Tot-C	1.03	Leu/Tyr	1.01
HDL2-C	1.04	Leu/Val	1.01
HDL3-C	1	L-HDL-C/L-HDL-PL	1.02
HDL-D	1.03	L-HDL-L/M-HDL-L	1.04
His/Ile	1.04	L-HDL-L/S-HDL-L	1.04
His/Leu	1.02	M-HDL-C/M-HDL-PL	1.03
His/Phe	1.03	M-HDL-L/S-HDL-L	1.02
His/Tyr	1.02	M-LDL-C/M-LDL-PL	1.02
His/Val	1.03	PC/Tot-CH	1
IDL-C-eFR	1.02	Phe/Tyr	1.02
Ile/Glc	1.03	Phe/Val	1.02
Ile/Leu	1.02	Pyr/Cit	1.03
Ile/Phe	1.02	Serum-TG/Glc	1.03
Ile/Serum-C	1.03	TG/PG	1.02
Ile/Serum-TG	1.03	Tot-C/Est-C	1
Ile/Tyr	1.03	Tyr/Val	1.02
Ile/Val	1.02	Val/Glc	1.03
LA/DHA	1.03	Val/Serum-TG	1.04
LA/FAw67	1.03	VLDL-D	1.02
LA/PUFA	1.03	VLDL-TG-eFR	1.04
Lac/Ala	1.04	XL-HDL-L/L-HDL-L	1.01
Lac/Cit	1.02	XL-HDL-L/M-HDL-L	1.01
Lac/Glc	1.02	XL-HDL-L/S-HDL-L	1.01

Supplementary Table 7. All metabolite associations $P < 2.31 \times 10^{-10}$. N.B! This table is provided as a separate file.

Gene	snp	<i>P</i> -value	Chromosome	Position
FCGR2B	1-159807481	1.3*10 ⁻²⁰	1	159914011
FCGR2B	1-159807481	1.6*10 ⁻¹²	1	159914480
CLTCL1	rs807669	1.8*10 ⁻¹⁹	22	17555106
PLTP	rs6065904	2.4*10-8	20	43961028
SPRYD4	rs2638315	3.8*10 ⁻¹³	12	55149894
FCGR2A	1-159807481	3.9*10 ⁻¹⁰	1	159755560

Supplementary Table 8. Spearman rank correlation *P*-values for expression eQTLs reaching genome wide significance ($P < 9 \times 10^{-7}$).

Supplementary Figures

Supplementary Figure 1. Regional plots for significant loci. The green colored dot is used if the SNP has been genotyped in at least 3 study cohorts. Blue dot marks SNPs imputed from HapMap 3 reference panel and black dot represent SNPs genotyped from 1000 genomes reference panel. Red line presents the significance level $P = 2.32*10^{-10}$ and black line represents the nominal genome wide level of significance ($P < 5*10^{-8}$). Genes in the region are represented with bars in different colors and the regional candidate gene is shown in thicker black bar.

Supplementary Figure 2. Quantile-quantile (QQ) plots for the meta-analysis of the lead metabolic traits reported in **Tables 2** and **3**. Genomic control was utilized after the meta-analysis; the meta-analysis inflation factors for the traits shown were between 1.00-1.06. The expected null distribution is plotted along the diagonal as a red line and the distribution of observed *P*-values is plotted as black circles.

L-HDL-L/M-HDL-L

Supplementary Figure 3. Box plots for the lead metabolic traits reported in **Tables 2** and **3** plotted as a function of genotype (light shade: non-coded allele homozygotes, medium shade: heterozygotes, dark shade: coded allele homozygotes) and study (NFBC: green, YF: blue, HBCS: red, GenMets: turquoise, DILGOM: yellow) in chromosomal order. The plots present the untransformed and unadjusted trait values. The numbers of samples for each genotype in each cohort are indicated above the boxes. The boxes contain 50 % of the observations extending from 1st quartile (Q1) to 3rd quartile (Q3). The horizontal line indicates the median. The ends of the whiskers indicate the minimum and maximum of the data or, if extreme values are present, are drawn to the observation that is closest to, but no more than, 1.5 times the inter-quartile range (Q3-Q1) from the end of the box. The observations more distant than this are shown individually on the plots.

rs1260326 in chr 2

rs1440581 in chr 4

rs6900341 in chr 6

rs651821 in chr 11

rs3764261 in chr 16

rs55791371 in chr 19

rs807669 in chr 22

Supplementary Figure 4. Comparison of SNP genotypes which were imputed using genome wide data and genotyped in Cardiometabochip. Only SNPs which had imputation info greater than 0.4 were included. MAF = Minor allele frequency.

MAF

SUPPLEMENTARY NOTE

Study samples and phenotypes

The five studies included in the meta-analysis are described in **Table 1** in the main text and in further detail below. In addition, a twin study sample was available for estimating the heritabilities of the metabolomic measures. All participants provided informed consent, and local ethical committees at participating institutions approved individual study protocols.

Study descriptions

1. FINRISK-07 (DILGOM)

The sample has been described earlier by Inouye *et al.*¹. In brief, the subjects (ages between 25 and 74) participated in the DIetary, Lifestyle and Genetic determinants of Obesity and Metabolic syndrome study (DILGOM) in the Helsinki region. DILGOM is a part of the FINRISK 2007 survey. FINRISK collections are performed every five years and the data are used for research projects and for national health monitoring purposes.

2. Helsinki Birth Cohort Study (HBCS)

The primary aim of the Helsinki Birth Cohort Study was to assess how growth and environmental factors acting during the fetal period and childhood are related to health in adult life. A particular focus has been the study of the early life origins of cardiovascular disease and its risk factors. Participants were born between 1934 and 1944 in Helsinki. An essential component of the project was a detailed clinical examination of over 2500 volunteers, parts of which provided data included in this study².

3. Health2000 GenMets Study (GenMets)

The GenMets sample has been described in detail previously by Perttilä *et al.*³. Individuals in GenMets are metabolic syndrome cases and matched controls drawn from the Finnish Health2000 study, a population health survey. Persons with known diabetes were excluded. Participants included in the present study had participated in an additional survey which included drawing fasting serum samples.

4. Northern Finland Birth Cohort 1966 (NFBC1966)

The NFBC1966 has been described in detail previously by Rantakallio⁴. The original study design focused on factors affecting pre-term birth, low birth weight, and subsequent morbidity and mortality. Mothers living in the two northern-most provinces of Finland were invited to participate if they had expected delivery dates during 1966. Individuals still living in the Helsinki area or Northern Finland (N = 5923) were asked at age 31 to participate in a detailed biological and medical examination as well as a questionnaire.

5. Cardiovascular Risk in Young Finns Study (YF)

The Cardiovascular Risk in Young Finns Study (YF) is a population based prospective cohort study. It was conducted at five medical schools in Finland (Turku, Helsinki, Kuopio, Tampere and Oulu), with the aim of studying the levels of cardiovascular risk factors in children and adolescents in different parts of the country. The latest follow-up was conducted in 2007. The serum samples for this metabolomics study were collected at this latest follow up. The study and data collection protocols have been described in detail by Raitakari *et al.*⁵.

6. Finnish twin cohort

Heritability analyses in this study utilized twin pairs (221 MZ and 340 DZ pairs) from the FinnTwin12 (FT12) and FinnTwin16 (FT16) cohort studies. In brief, the FT12 is a population based-cohort longitudinal study of five consecutive birth cohorts of Finnish twins born between 1983 and 1987. All twins (and their parents) were initially contacted and invited to participate by mail in the autumn of the year in which their birth cohort reached 11 years of age. Subsequent follow-up assessments were made

when the twins were aged 14, 17 and \sim 22 years. The FT16 is a population-based longitudinal study of five consecutive birth cohorts of Finnish twins born between 1975 and 1979. Each pair was initially approached and invited to participate by mail in the 1-2 months following the twins' 16th birthday. The baseline data collection started in 1991 and was completed in 1996, with participation of 2733 twin pairs (response rate ~ 88%). Subsequent follow-up assessments were made when the twins were 17, 18.5, and ~25 years, following a similar approach.

For both the FT12 and FT16, the baseline and follow-up assessments included surveys of health habits and attitudes, symptom checklists, personality scales, and social relationships⁶. In addition, blood samples were taken from all twins during a visit to the twin research clinic in Helsinki (Finland) at the last follow-up (young adulthood) for DNA and biochemistry analyses. All biological samples were stored at -80°C at the National Institute for Health and Welfare. Circulating metabolites were determined in 1,269 twins (FT12: n=725, 286MZ and 439DZ; FT16: n=544, 198MZ and 346DZ) using a serum NMR metabolomics platform^{7, 8}. Data collection and analysis were approved by the ethics committees of the Department of Public Health of the University of Helsinki, the Helsinki and Uusimaa Hospital District and the IRB of Indiana University. Written informed consent was obtained from all participating twins.

Quantitative serum NMR metabolomics

The serum NMR metabolomics platform applied for metabolite quantification is based on three molecular windows (¹H NMR spectra) from each serum sample. The lipoprotein data (the LIPO window) and the low-molecular-weight metabolite data (LMWM) are acquired from native serum and the data from individual lipids (LIPID) from serum lipid extracts⁹. The experimental protocol including sample preparation and NMR spectroscopy are described in detail in Inouye *et al.*⁸. Further details of data analyses are briefly presented below.

¹H NMR is inherently a quantitative technique allowing for absolute metabolite quantification. The multimetabolic nature of serum inevitably causes signal overlap, however the metabolite content and

concentrations can be extracted by appropriate computational techniques¹⁰. In the case of the heavily overlapping data of lipoprotein lipids in the LIPO window, we have implemented several lipoprotein subclasses (e.g., VLDL subclasses), as well as other lipoprotein (e.g., HDL-C), and serum lipid (e.g., TGs) quantification models using regression modeling. Prior to metabolite quantification the spectral data undergo pre-processing with automated baseline zeroing, peak alignments and subtraction of the albumin signal background⁷. A simplified and computationally more efficient modification of the approach presented in Vehtari et al. is used¹¹. All the models used are cross-validated against NMR-independent high-performance liquid chromatography (HPLC) data¹². Before applying the predictive models, we verify that the new input spectrum lies within the limits ($\pm 10\%$) of the training data set; otherwise, the particular sample is rejected from the subclass analyses with no outcome. The 14 lipoprotein subclass sizes determined by HPLC¹² are as follows: chylomicrons and largest VLDL particles (with particle diameters from 75nm upwards), five different VLDL subclasses, namely, very large VLDL (average particle diameter of 64.0 nm), large VLDL (53.6 nm), medium VLDL (44.5 nm), small VLDL (36.8 nm), and very small VLDL (31.3 nm); IDL (28.6 nm), three LDL subclasses as large LDL (25.5 nm), medium LDL (23.0 nm), and small LDL (18.7); and four HDL subclasses as very large HDL (14.3 nm), large HDL (12.1 nm), medium HDL (10.9 nm), and small HDL (8.7 nm). The mean R² between HPLC and NMR cross-validated models for lipoproteins is 0.75 (sd = 0.14). 73 % of the models had $R^2 > 0.7$. The mean size for VLDL, LDL, and HDL particles was calculated by weighting the corresponding subclass diameters with their particle concentrations. In this case, IDL particles were included in the measure of mean LDL diameter. Incorporation of the NMR measures (total and HDL cholesterol and total triglycerides) into a recently introduced extended Friedewald approach enabled estimation of apolipoprotein A-I and B as well as HDL_2 -C and HDL_3 -C¹³.

In contrast to the LIPO window, the LMWM and LIPID windows feature sharper line shapes and less spectral overlap, which in turn ease metabolite quantification. Thus, the method of choice to quantify the low-molecular-weight metabolites in the LMWM spectra and the lipid signals in the LIPID spectra is

iterative lineshape fitting analysis. The molecular identity of each metabolite was determined based on multidimensional spectra and literature references of chemical shifts¹⁴. The PERCH NMR software (Perch Solutions Ltd, Kuopio, Finland) was used in all the lineshape fitting analyses¹⁵. To account for the variable material loss during the serum lipid extraction procedure and to allow absolute quantification, each metabolite concentration in the LIPID spectrum is scaled via the total cholesterol concentration (from the LIPID spectrum) according to the serum total cholesterol level as quantified from the native serum (i.e., the LIPO spectrum).

Conditional analyses

In order to investigate whether the loci contain additional independent signals further association analyses were performed for loci by conditioning the analyses on the SNP reported in **Tables 2** and **3**, on the previously published SNP or significantly associated variants in the neighboring loci. The analyses using the SNP reported in **Tables 2** and **3** did not reveal additional independent signals except that the chromosome 16 region showed two independent signals. One signal was associated with serum tyrosine levels (rs4788815) and the other signal with the ratio of glycoproteins to total cholesterol (rs34042070 and rs3213423). All SNP associations remained significant after conditioning SNPs on each other. The SNP rs6917603 in the *PPPIR11*-region was conditioned with previously associated SNPs in the region (rs2247056 and rs3177928). The *CPT1A*-locus SNP, rs17610395, was conditioned on rs174547 from the *FADS*-locus.

Validation by sequencing

Nine of the eleven novel loci also showed association in the same region with a marker genotyped in at least 3 cohorts (with $P < 5 \times 10^{-8}$). For the other two loci we aimed to validate the imputed genotypes by sequencing the genomic segment containing the variant in a total of 20 individuals carrying the imputed rare allele and 40 individuals homozygous for the common allele (variants rs17610395 and 17-7083575).

We sequenced PCR products using capillary electrophoresis with an ABI3730xl DNA Analyzer (Applied Biosystems, Foster City, CA) and BigDye v.3.1 sequencing kit (Applied Biosystems).

For rs17610395, we confirmed the presence of the rare allele, either in homozygote or heterozygote form, in 17 out of 19 successful sequencing reactions. One out of 39 individuals, who did not have an imputed heterozygous genotype in our imputed data, proved to be heterozygous after sequencing. For SNP 17-7083575, we confirmed the presence of the rare allele in a heterozygote state in 18 out of 19 imputed rare allele carriers. Three out of 40 individuals, who did not have an imputed heterozygous genotype, proved to be heterozygous after the sequencing of 17-7083575.

Heritability estimates

Heritability estimates were obtained utilizing all of the phenotypic information available from serum NMR metabolomics of the twin pairs. As the distributions of many of the NMR measures were initially highly skewed, they were standardized by age and sex and transformed using rank transformation methods, in R. This data pre-processing both achieved normality and standardized the variables so that the means and variances were independent of age and sex variability. Subsequently, we estimated the heritability of each metabolite measure using standard modeling methods: Univariate genetic models were fitted to the raw data utilizing R software with the specialized "OpenMx" package, and applying full information maximum likelihood methods. For each NMR-based phenotype, models estimating the hypothetical combinations of the different genetic and environmental sources of influence (ACE, ADE, AE, CE and E, where A is the additive genetic influence, C is the shared environmental influence, D is the dominance genetic influence, and E is the unique environmental influence) were built and tested against a saturated model, where no inference on the underlying architecture of the phenotype is assumed. As only data from MZ and DZ twins reared together were available for this study, C and D influences could not be modeled together. The simplest genetic model that fitted the data best was chosen by comparing the fit statistics (likelihood ratio test – LRT, as well as Akaike's Information Criterion – AIC)

of the hierarchically nested, hypothetical models against that of the saturated model. A non-significant *P*-value from the LRT indicated that the hypothetical sub-model did not fit the data more poorly than the saturated model, while smaller AIC values indicated a better fit to the data. A subset of twins had both enzymatic lipoprotein measures and NMR-measures available. Those were used for the comparison of heritability estimates between enzymatic and NMR methods (**Supplementary Tables 4 and 5**).

References

1. Inouye, M. *et al.* An immune response network associated with blood lipid levels. *PLoS Genet.* **6**, e1001113 (2010).

2. Yliharsila, H. *et al.* Body mass index during childhood and adult body composition in men and women aged 56-70 y. *Am. J. Clin. Nutr.* **87**, 1769-1775 (2008).

3. Perttila, J. *et al.* OSBPL10, a novel candidate gene for high triglyceride trait in dyslipidemic Finnish subjects, regulates cellular lipid metabolism. *J. Mol. Med.* **87**, 825-835 (2009).

4. Rantakallio, P. Groups at risk in low birth weight infants and perinatal mortality. *Acta Paediatr. Scand.* **193**, Suppl 193:1+ (1969).

5. Raitakari, O. T. *et al.* Cohort profile: the cardiovascular risk in Young Finns Study. *International journal of epidemiology* **37**, 1220-6 (2008).

6. Kaprio, J., Pulkkinen, L. & Rose, R. J. Genetic and environmental factors in health-related behaviors: studies on Finnish twins and twin families. *Twin Res.* **5**, 366-371 (2002).

7. Soininen, P. *et al.* High-throughput serum NMR metabonomics for cost-effective holistic studies on systemic metabolism. *Analyst* **134**, 1781-1785 (2009).

8. Inouye, M. *et al.* Metabonomic, transcriptomic, and genomic variation of a population cohort. *Mol. Syst. Biol.* **6**, 441 (2010).

9. Tukiainen, T. *et al.* A multi-metabolite analysis of serum by 1H NMR spectroscopy: early systemic signs of Alzheimer's disease. *Biochem. Biophys. Res. Commun.* **375**, 356-361 (2008).

10. Ala-Korpela, M. 1H NMR spectroscopy of human blood plasma. *Prog Nucl Magn Reson Spectrosc* 27, 475-554 (1995).

11. Vehtari, A. *et al.* A novel Bayesian approach to quantify clinical variables and to determine their spectroscopic counterparts in 1H NMR metabonomic data. *BMC Bioinformatics* **8 Suppl 2**, S8 (2007).

12. Okazaki, M. *et al.* Identification of unique lipoprotein subclasses for visceral obesity by component analysis of cholesterol profile in high-performance liquid chromatography. *Arterioscler. Thromb. Vasc. Biol.* **25**, 578-584 (2005).

13. Niemi, J. *et al.* Estimation of VLDL, IDL, LDL, HDL2, apoA-I, and apoB from the Friedewald inputs--apoB and IDL, but not LDL, are associated with mortality in type 1 diabetes. *Ann. Med.* **41**, 451-461 (2009).

14. Wishart, D. S. *et al.* HMDB: the Human Metabolome Database. *Nucleic Acids Res.* **35**, D521-6 (2007).

15. Soininen, P., Haarala, J., Vepsäläinen, J., Niemitz, M. & Laatikainen, R. Strategies for organic impurity quantification by 1H NMR spectroscopy: Constrained total-line-shape fitting. *Anal. Chim. Acta* **542**, 178-185 (2005).

16. Pietilainen, K. H. *et al.* Global transcript profiles of fat in monozygotic twins discordant for BMI: pathways behind acquired obesity. *PLoS Med.* **5**, e51 (2008).

17. Newgard, C. B. *et al.* A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. *Cell. Metab.* **9**, 311-326 (2009).

18. Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. (2011).

19. Saier, E. L., Nordstrand, E., Juves, M. W. & Hartsock, R. J. The ratio of free to esterified cholesterol in serum. A new discriminant in correlating lipid metabolism with disease state. *Am. J. Clin. Pathol.* **71**, 83-87 (1979).

20. Steiner, A., Kendall, F. E. & Mathers, J. A. The abnormal serum lipid pattern in patients with coronary arteriosclerosis. *Circulation* **5**, 605-608 (1952).

21. Piperi, C. *et al.* The significance of serum HDL phospholipid levels in angiographically defined coronary artery disease. *Clin. Biochem.* **37**, 377-381 (2004).

22. Chasman, D. I. *et al.* Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis. *PLoS Genet.* **5**, e1000730 (2009).

23. Huuskonen, J., Olkkonen, V. M., Jauhiainen, M. & Ehnholm, C. The impact of phospholipid transfer protein (PLTP) on HDL metabolism. *Atherosclerosis* **155**, 269-281 (2001).

24. Wang, L., Folsom, A. R. & Eckfeldt, J. H. Plasma fatty acid composition and incidence of coronary heart disease in middle aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. *Nutr. Metab. Cardiovasc. Dis.* **13**, 256-266 (2003).

25. Rhee, E. P. *et al.* Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. *J. Clin. Invest.* **121**, 1402-1411 (2011).

26. Tanaka, T. *et al.* Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. *PLoS Genet.* **5**, e1000338 (2009).

27. Yerlikaya, F. H., Mehmetoglu, I., Kurban, S. & Tonbul, Z. Plasma Fatty Acid composition in continuous ambulatory peritoneal dialysis patients: an increased omega-6/omega-3 ratio and deficiency of essential Fatty acids. *Ren. Fail.* **33**, 819-823 (2011).