Supplementary Material

A biomimetic domino reaction for the concise synthesis of capreomycidine and epicapreomycidine

Martin Büschleb,[‡] Markus Granitzka,[†] Dietmar Stalke,[†] Christian Ducho^{‡§}*

[‡]Georg-August-University Göttingen, Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, 37 077 Göttingen, Germany [†]Georg-August-University Göttingen, Department of Chemistry, Institute of Inorganic Chemistry, Tammannstr. 4, 37 077 Göttingen, Germany [§]University of Paderborn, Department of Chemistry, Warburger Str. 100, 33 098 Paderborn, Germany Corresponding author *E-mail: christian.ducho@uni-paderborn.de

Table of contents

NMR-based determination of the configuration of δ -azido-didehydro α -amino acids	
11a and 21	S2
¹ H and ¹³ C and NMR spectra of all new compounds	S 3
Data on the X-ray crystal structure of (<i>Z</i>)-11a	S19

NMR-based determination of the configuration of δ -azido-didehydro α -amino acids 11a and 21

Mazurkiewicz et al. have established the following ¹H NMR criteria (CDCl₃) for the distinction of (*Z*)- and (*E*)-acyl didehydro amino acids (Mazurkiewicz R, Kuźnik A, Grymel M, Kuźnik N (2005) ¹H NMR spectroscopic criteria for the configuration of *N*-acyl- α , β - dehydro- α -amino acid esters. Magn. Reson. Chem. 43:36-40):

 $\delta^{\text{H-3}}(Z) < \delta^{\text{H-3}}(E)$ and $\delta^{\text{NH}}(Z) < \delta^{\text{NH}}(E)$

For 11a and 21, the following chemical shifts were observed:

(Z)-11a: 6.19 (NH), 6.38 (H-3)	(Z)- 21 : 6.45 (H-3, NH)
(E)-11a: 6.66 (H-3), 6.74 (NH)	(E)- 21 : 6.76 (H-3), 6.98 (NH)

These data are in complete agreement with the established criteria and therefore reveal the (Z)-configured didehydro amino acids to be the main products of the respective Wittig-Horner reactions.

¹H NMR spectrum of the mixture of (*rac*)- $1 \cdot 2$ HCl and (*rac*)- $2 \cdot 2$ HCl (300 MHz, D₂O)

¹³C NMR spectrum of the mixture of (*rac*)- $1 \cdot 2$ HCl and (*rac*)- $2 \cdot 2$ HCl (76 MHz, D₂O)

¹³C NMR spectrum of **8e** (126 MHz, DMSO-d₆)

¹H NMR spectrum of **8f** (300 MHz, DMSO-d₆)

¹³C NMR spectrum of **8f** (126 MHz, DMSO-d₆)

¹H NMR spectrum of **8g** (300 MHz, DMSO-d₆)

¹³C NMR spectrum of **8g** (76 MHz, DMSO-d₆)

¹³C NMR spectrum of **8h** (126 MHz, DMSO-d₆)

¹H NMR spectrum of (*Z*)-11a (300 MHz, CDCl₃)

¹³C NMR spectrum of (*Z*)-11a (76 MHz, CDCl₃)

¹H NMR spectrum of (*E*)-11a (300 MHz, CDCl₃)

¹³C NMR spectrum of (*E*)-11a (76 MHz, CDCl₃)

¹H NMR spectrum of (*Z*)-11b (300 MHz, CDCl₃)

 13 C NMR spectrum of (*Z*)-11b (75 MHz, CDCl₃)

¹H NMR spectrum of (*Z*)-11c (300 MHz, CDCl₃)

 13 C NMR spectrum of (*Z*)-11c (76 MHz, CDCl₃)

¹H NMR spectrum of (*Z*)-11d (300 MHz, DMSO- d_6)

 13 C NMR spectrum of (*Z*)-11d (76 MHz, DMSO-d₆)

¹H NMR spectrum of the mixture of (*rac*)-14 and (*rac*)-15 (300 MHz, CDCl₃)

¹³C NMR spectrum of the mixture of (*rac*)-14 and (*rac*)-15 (76 MHz, CDCl₃)

¹H NMR spectrum of the mixture of (*rac*)-17 and (*rac*)-18 (300 MHz, DMSO-d₆)

¹³C NMR spectrum of the mixture of (*rac*)-17 and (*rac*)-18 (76 MHz, DMSO-d₆)

¹H NMR spectrum of (Z)-**21** (300 MHz, CDCl₃)

¹³C NMR spectrum of (*Z*)-**21** (76 MHz, CDCl₃)

¹H NMR spectrum of (*E*)-**21** (300 MHz, CDCl₃)

¹³C NMR spectrum of (*E*)-**21** (76 MHz, CDCl₃)

¹H NMR spectrum of the mixture of (*rac*)-23 and (*rac*)-24 (300 MHz, CDCl₃)

¹³C NMR spectrum of the mixture of (*rac*)-23 and (*rac*)-24 (76 MHz, CDCl₃)

¹H NMR spectrum of the mixture of (*rac*)-27 and (*rac*)-28 (300 MHz, D_2O)

 13 C NMR spectrum of the mixture of (*rac*)-27 and (*rac*)-28 (76 MHz, D₂O)

Data on the X-ray crystal structure of (Z)-11a

Figure S1. Molecular structure of (Z)-11 with ellipsoid shown at 50% probability level. Color code: carbon = black, oxygen = red, nitrogen = blue, hydrogen = white.

The crystal of (Z)-11 was a non-merohedral twin and the two domains were separated using RLATT. The fractional distribution of the second domain refines to 0.4669 (9).

The disorder of the azide groups could be described as a switching between two positions (e.g. N2-N3-N4 to N2'-N3'-N4' and N6-N7-N8 to N6'-N7'-N8' and vice versa). The two position were found in the density difference map and refined using bond lengths restraints and anisotropic displacement parameter restraints. The position of the hydrogen atoms H1 and

H8 were found in the density difference map and refined using bond lengths similarity restraints.

Identification code	CCDC 867825	
Empirical formula	$C_{14}H_{24}N_4O_4$	
Formula weight	312.37	
Temperature	100(2) K	
Wavelength	71.073 pm	
Crystal system	Monoclinic	
Space group	$P 2_1/c$	
Unit cell dimensions	a = 1634.8(3) pm	α= 90°
	b = 1001.7(2) pm	β=109.24(2)°
	c = 2223.5(3) pm	$\gamma = 90^{\circ}$
Volume	3.4378(10) nm ³	
Z	8	
Density (calculated)	1.207 Mg/m ³	
Absorption coefficient	0.089 mm ⁻¹	
F(000)	1344	
Crystal size	0.15 x 0.10 x 0.08 mm	
Theta range for data collection	1.32 to 25.06°.	
Index ranges	-19<=h<=18, 0<=k<=11, 0<=l<=26	
Reflections collected	61887	
Independent reflections	6073 [R(int) = 0.0759]	
Completeness to theta = 25.06°	99.7 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9705 and 0.8145	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6073 / 201 / 492	
Goodness-of-fit on F ²	1.068	
Final R indices [I>2sigma(I)]	R1 = 0.0415, $wR2 = 0.0851$	
R indices (all data)	R1 = 0.0575, wR2 = 0.0911	
Extinction coefficient	0.0019(3)	
Largest diff. peak and hole	0.192 and -0.185 e.Å ⁻³	

Table S1. Crystallographic data for the structural analysis of (Z)-11a