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A powerful Bayesian meta-analysis method to integrate multiple
gene set enrichment studies

S1 Details of Posterior Computation
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To simplify the notations, we use Θ/θ to denote the parameter set that includes all the parameters
except for θ. The following list gives the full posterior conditionals derived from the full probability
model (i = 1, ..., Ik, j = 1, ..., J , k = 1, ...,K, d ∈ {0,+,−}); and R code for the corresponding
Gibbs sampler is provided at the URL http://qbrc.swmed.edu/software/a-powerful-bayesian-meta-
analysis-method-to-integrate-multiple-gene-set-enrichment-studies/
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Next, we relax the assumption that a common variance of error σ2
k is shared by all genes in study

k, and outline the changes in the full conditionals. That is, we replace σ2
k by σ2

jks when study k
has sufficient samples to produce stable estimates of the gene-wise variances. Then for such studies
(say k),

1. When sampling βjks and αjks given Vjk = 1, replace σ2
k by σ2

jk in (S2) and (S3).

2. The step of sampling σ2
k should be replaced by the step of sampling σ2

jks. That is, (S4) should
be replaced by the following:
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for any gene j with Vjk = 1, under independent Inverse-Gamma(w, v) priors for all σ2
jks.

3. All the other steps remain the same as before.
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S2 Additional Tables and Figures from Simulation

Gene Type Study Para. Scenarios of Simulation I
1 2 3 4 5

UR genes

1 µ1j {0.75, 1} 0.5 {0.75, 1} N (u, 0.5) ,
u ∈ {1, 1.5} N (1, 0.5)

2 µ2j µ1j {1, 1.5} µ1j N (u, 0.5)
N (u, 0.5) ,
u ∈ {1.5, 2}

3 µ3j - - µ1j - -
4 µ4j - - µ1j - -

DR genes

1 ν1j −µ1j −µ1j −µ1j
N (v, 0.5) ,
v = −u

N (−1, 0.5)

2 ν2j −µ2j −µ2j −µ2j
N (v, 0.5) ,
v = −u

N (v, 0.5) ,
v = −u

3 ν3j - - −µ3j - -
4 ν4j - - −µ4j - -

All α {0.10, 0.15, 0.25}
All λ {0.4, 0.6, 0.8, 1.0}

Table S1: Simulation I settings of five scenarios. In the first scenario, two studies with the same
effect size are considered; in the second, two studies are considered but with different effect sizes.
In the third, four studies instead of two are considered and everything else is the same as the first
scenario. The last two scenarios consider varying effect sizes across genes, where the fourth considers
two studies with the same mean of the effect sizes while the fifth considers two studies with different
means of the effect sizes.

(a) Gene expression for cases
Gene ID Study 1 Study 2

1-200 N (1, 1) N (1.5, 1)

201-800 N(0, 1) N(0, 1)

801-1000 N (−1, 1) N (−1.5, 1)

(b) Gene sets
Set ID UR genes DR genes EE genes
1-30 35% 15% 50%
31-60 15% 35% 50%
61-100 20% 20% 60%

Table S2: Simulation II settings: (a) Genes 1-200 are UR genes, 201-800 are EE genes, and 801-1000
are DR genes; (b) Gene sets 1-30 are UR gene enriched sets, 31-60 are DR gene enriched sets, and
61-100 are non-enriched gene sets. Note that gene expression intensities for cases are simulated
using the table in (a) while the intensities for controls are all simulated from N(0, 1).
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Figure S1: Simulation I–Power comparison for Scenario 3. In each subpanel, the blue dash-dot
line represents MAPE_P; the green dotted line represents MAPE_G; the red dash line represents
MAPE_I; and the black solid line represents our Bayesian method.
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Figure S2: Simulation I–Power comparison for Scenario 4. In each subpanel, the blue dash-dot
line represents MAPE_P; the green dotted line represents MAPE_G; the red dash line represents
MAPE_I; and the black solid line represents our Bayesian method.
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Figure S3: Simulation I–Power comparison for Scenario 5. In each subpanel, the blue dash-dot
line represents MAPE_P; the green dotted line represents MAPE_G; the red dash line represents
MAPE_I; and the black solid line represents our Bayesian method.
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Figure S4: Simulation III–ROC curve comparison with the expression intensities of DE genes for
cases from t-distributions with df = 4 (with heavier tails than normal distributions). In each
subpanel, the blue dash-dot line represents MAPE_P; the green dotted line represents MAPE_G;
the red dash line represents MAPE_I; and the black solid line represents our Bayesian method.
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Figure S5: Simulation III–ROC curve comparison with the expression intensities of DE genes for
cases from gamma distributions (skewed compared to normal distributions). In each subpanel, the
blue dash-dot line represents MAPE_P; the green dotted line represents MAPE_G; the red dash
line represents MAPE_I; and the black solid line represents our Bayesian method.
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S3 Additional Tables and Figures from Data Analysis

In our data example, patients in all data sets were classified into two groups based on their survival
time. We used the pamr.surv.to.class2 function in the pamr R package (Tibshirani et al. 2002;
Tibshirani et al. 2003) to determine the two groups (i.e., long and short survival groups). The
function splits observations into the two groups based on the Kaplan-Meier estimates. For each
observation (survival time, censoring status), it computes the probability of that observation falling
into one of the two survival groups. The probability is 1 or 0 for an uncensored observation depending
on the survival time. For a censored observation, the probability is between 0 and 1 based on the
Kaplan Meier estimate.

The following are tables and figures for the data example.

Data Set Name Number of (Controls, Cases)
GSE10245 (Kuner et al. 2009) 13, 27
GSE14814 (Zhu et al. 2010) 7, 21
GSE3141 (Bild et al. 2006) 22, 36
GSE3593 (Potti et al. 2006) 12, 31
CL (Shedden et al. 2008) 17, 65
Moff (Shedden et al. 2008) 27, 52

NCI_U133A (Shedden et al. 2008) 18, 86
NCI_Lung_U133A (Shedden et al. 2008) 44, 131

Table S3: Data example–Lung cancer data sets used in real data analysis. Data set GSE10245 and
GSE 3141 have 20633 genes and the other six have 12992 genes.

DOCK9 SNRPA1 SLC35A5 FCF1
RRM2 DDX17 H3F3A ABCC10

AURKA MRPL3 HNRNPK SFTPB
HOPX HMGB2 HSPD1 BTF3
PRC1 CYCS DEK CYB5A

GPR116 NFIB CBX3 YPEL5
NKX2-1 ATP5I NBPF15 UBE2J1
TTC37 RGL1 ATP1B1 HIGD1A
CDKN3 CBLB NDUFAB1 NUSAP1
COL4A3 ZMYM2 NUP153 CCDC90B
IFT57 TUBA1B CTSH CCDC59

ATP8A1 BLVRA KIAA0101 OLA1
C1orf116 LARP1 PLOD2 FBXO38
CYP2B6 MED13L LSM5 DENR
DPP4 IDS NBN ANGEL2

HSD17B6 GNS MTIF2 N4BP2L2
MBIP ATP6V0A1 PSMA4 MCM4

HNRNPA2B1 SIDT2 TBCA EZH1
DBT DNAJC21 CLPX KIAA0240

SNRPG

Table S4: Data example–Positive control genes related to lung cancer.
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KEGG Pathways Bayesian MAPE_I_Fisher MAPE_I_minP

ϕ̂g Q-value† Q-value†

Natural Killer Cell Mediated Cytotoxicity 1 0∗ 0.011∗

Nucleotide Excision Repair 1 0∗ 0.011∗

Non-Small Cell Lung Cancer 1 0.015∗ 0.020∗

DNA Replication 1 0.004∗ 0∗

Thyroid Cancer 1 0∗ 0.906
Pathways In Cancer 1 0∗ 0.940

T Cell Receptor Signaling Pathway 1 0.004∗ 0.690
Melanoma 1 0.009∗ 0.641

PPAR Signaling Pathway 1 0.011∗ 1
Renal Cell Carcinoma 1 0.012∗ 0.970

mTOR Signaling Pathway 1 0.033∗ 0.926
Pancreatic Cancer 1 0.035∗ 0.949

Small Cell Lung Cancer 1 0.045∗ 0.822
VEGF Signaling Pathway 1 0.050 0.760

TGF Beta Signaling Pathway 1 0.316 0.513

†:Q-values with “*” are below the 0.05 threshold value.

Table S5: Selected enriched pathways identified by the Bayesian model.
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Figure S6: Data example–Empirical distributions of p-values from the Fisher’s combined probability
tests for genes in selected pathways with low estimated posterior probability of enrichment. For
each pathway/gene set, the number in the parenthesis is the estimate of the corresponding posterior
enrichment probability.
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We also carried out the following analysis for the data example, as suggested by one of the
reviewers. First, we randomly split each data set in two with the requirement that both groups will
have at least three samples. Then we ran our proposed method and the MAPEs at their default
settings. After obtaining an ordered list of pathways from each method, we calculated the percent
of common pathways identified in the two halves among the top 5%, 10%, 15% and 20% pathways,
respectively. We repeated this procedure 10 times and report the average percent values of pathways
in common in the table below. The result shows that the reproducibility of the Bayesian method
appears to be better or in par with the MAPE ones.

Top Pathways(%) MAPE_P MAPE_G MAPE_I Bayesian
5% 10.0% 3.0% 6.0% 31.7%
10% 23.5% 13.5% 11.5% 45.0%
15% 42.3% 17.0% 23.7% 45.0%
20% 49.8% 20.5% 28.8% 46.3%

Table S6: Data example–Comparison in percentage of common pathways identified based on random
half splits.
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