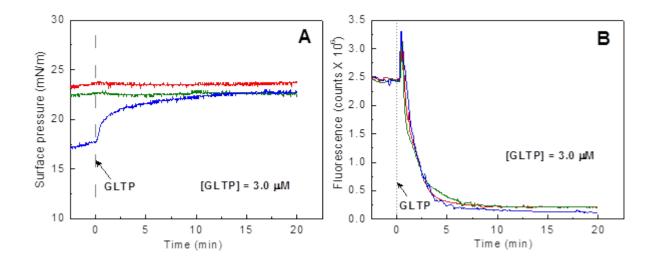
GLTP-fold Interaction with Planar Phosphatidylcholine Surfaces is Synergistically Stimulated by Phosphatidic Acid and Phosphatidylethanolamine*


Xiuhong Zhai¹, William E. Momsen¹, Dmitry A. Malakhov¹, Ivan A. Boldyrev², Maureen M. Momsen¹, Julian G. Molotkovsky^{2,#}, Howard L. Brockman^{1,#} Rhoderick E. Brown^{1,#}

¹The Hormel Institute, University of Minnesota, Austin, MN, USA ²Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation

SUPPLEMENTAL INFORMATION & FIGURES

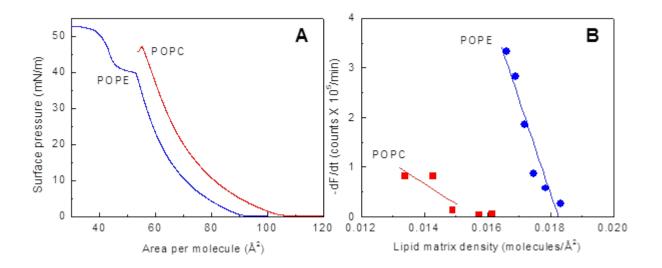

Supplementary Figure S1

Figure 4 Supplement. Surface Pressure Regulates Glycolipid Removal Rate from the Monolayer in Phospholipid Composition–Dependent Manner. The left panel shows the surface pressure change as a function of time when the monolayer matrix is POPE. The initial fixed surface pressures are 17, 22, and 24 mN/m. Right panel **B**) is the corresponding surface fluorescence response as a function of time for the different initial surface pressures in A). At sufficiently low initial surface pressure, GLTP penetrates into POPE resulting in pressure increase (blue trace).

Supplementary Figure S2

Figure 5 Supplement. Lipid Surface Density Calculations. To estimate the B15-GalCer surface density in POPC or POPE, we relied on the surface pressure versus molecular area isotherms of POPC and POPE shown in **(A)** which agree well with our earlier measurements [e.g. Brockman et al., 2003, *Biophys. J.* 85: 2384-2396; Fig. 1A]. The area contribution (per molecule) of the 1 mole% B15-GalCer is similar in magnitude to that of POPC or POPE. **(B)** The impact of POPC and POPE surface density on the B15-GalCer uptake rate by GLTP. The surface densities for POPC and POPE shown in (B) were obtained by calculating the inverse values for their cross-sectional areas (area per molecule) that correspond to the surface pressures in Figures 4A and 4C.

